Deep Learning
671 skills in Data & AI > Deep Learning
at-dispatch-v2
Convert PyTorch AT_DISPATCH macros to AT_DISPATCH_V2 format in ATen C++ code. Use when porting AT_DISPATCH_ALL_TYPES_AND*, AT_DISPATCH_FLOATING_TYPES*, or other dispatch macros to the new v2 API. For ATen kernel files, CUDA kernels, and native operator implementations.
docstring
Write docstrings for PyTorch functions and methods following PyTorch conventions. Use when writing or updating docstrings in PyTorch code.
add-uint-support
Add unsigned integer (uint) type support to PyTorch operators by updating AT_DISPATCH macros. Use when adding support for uint16, uint32, uint64 types to operators, kernels, or when user mentions enabling unsigned types, barebones unsigned types, or uint support.
Skill Development
This skill should be used when the user wants to "create a skill", "add a skill to plugin", "write a new skill", "improve skill description", "organize skill content", or needs guidance on skill structure, progressive disclosure, or skill development best practices for Claude Code plugins.
create-skill-file
Guides Claude in creating well-structured SKILL.md files following best practices. Provides clear guidelines for naming, structure, and content organization to make skills easy to discover and execute.
dbt-transformation-patterns
Master dbt (data build tool) for analytics engineering with model organization, testing, documentation, and incremental strategies. Use when building data transformations, creating data models, or implementing analytics engineering best practices.
agent-memory
Use this skill when the user asks to save, remember, recall, or organize memories. Triggers on: 'remember this', 'save this', 'note this', 'what did we discuss about...', 'check your notes', 'clean up memories'. Also use proactively when discovering valuable findings worth preserving.
pytorch-lightning
Deep learning framework (PyTorch Lightning). Organize PyTorch code into LightningModules, configure Trainers for multi-GPU/TPU, implement data pipelines, callbacks, logging (W&B, TensorBoard), distributed training (DDP, FSDP, DeepSpeed), for scalable neural network training.
cellxgene-census
Query CZ CELLxGENE Census (61M+ cells). Filter by cell type/tissue/disease, retrieve expression data, integrate with scanpy/PyTorch, for population-scale single-cell analysis.
brenda-database
Access BRENDA enzyme database via SOAP API. Retrieve kinetic parameters (Km, kcat), reaction equations, organism data, and substrate-specific enzyme information for biochemical research and metabolic pathway analysis.
neuropixels-analysis
Neuropixels neural recording analysis. Load SpikeGLX/OpenEphys data, preprocess, motion correction, Kilosort4 spike sorting, quality metrics, Allen/IBL curation, AI-assisted visual analysis, for Neuropixels 1.0/2.0 extracellular electrophysiology. Use when working with neural recordings, spike sorting, extracellular electrophysiology, or when the user mentions Neuropixels, SpikeGLX, Open Ephys, Kilosort, quality metrics, or unit curation.
scientific-schematics
Create publication-quality scientific diagrams using Nano Banana Pro AI with smart iterative refinement. Uses Gemini 3 Pro for quality review. Only regenerates if quality is below threshold for your document type. Specialized in neural network architectures, system diagrams, flowcharts, biological pathways, and complex scientific visualizations.
ceo-advisor
Executive leadership guidance for strategic decision-making, organizational development, and stakeholder management. Includes strategy analyzer, financial scenario modeling, board governance frameworks, and investor relations playbooks. Use when planning strategy, preparing board presentations, managing investors, developing organizational culture, making executive decisions, or when user mentions CEO, strategic planning, board meetings, investor updates, organizational leadership, or executive strategy.
pyhealth
Comprehensive healthcare AI toolkit for developing, testing, and deploying machine learning models with clinical data. This skill should be used when working with electronic health records (EHR), clinical prediction tasks (mortality, readmission, drug recommendation), medical coding systems (ICD, NDC, ATC), physiological signals (EEG, ECG), healthcare datasets (MIMIC-III/IV, eICU, OMOP), or implementing deep learning models for healthcare applications (RETAIN, SafeDrug, Transformer, GNN).
get-available-resources
This skill should be used at the start of any computationally intensive scientific task to detect and report available system resources (CPU cores, GPUs, memory, disk space). It creates a JSON file with resource information and strategic recommendations that inform computational approach decisions such as whether to use parallel processing (joblib, multiprocessing), out-of-core computing (Dask, Zarr), GPU acceleration (PyTorch, JAX), or memory-efficient strategies. Use this skill before running analyses, training models, processing large datasets, or any task where resource constraints matter.
pennylane
Cross-platform Python library for quantum computing, quantum machine learning, and quantum chemistry. Enables building and training quantum circuits with automatic differentiation, seamless integration with PyTorch/JAX/TensorFlow, and device-independent execution across simulators and quantum hardware (IBM, Amazon Braket, Google, Rigetti, IonQ, etc.). Use when working with quantum circuits, variational quantum algorithms (VQE, QAOA), quantum neural networks, hybrid quantum-classical models, molecular simulations, quantum chemistry calculations, or any quantum computing tasks requiring gradient-based optimization, hardware-agnostic programming, or quantum machine learning workflows.
pufferlib
This skill should be used when working with reinforcement learning tasks including high-performance RL training, custom environment development, vectorized parallel simulation, multi-agent systems, or integration with existing RL environments (Gymnasium, PettingZoo, Atari, Procgen, etc.). Use this skill for implementing PPO training, creating PufferEnv environments, optimizing RL performance, or developing policies with CNNs/LSTMs.
AgentDB Learning Plugins
Create and train AI learning plugins with AgentDB's 9 reinforcement learning algorithms. Includes Decision Transformer, Q-Learning, SARSA, Actor-Critic, and more. Use when building self-learning agents, implementing RL, or optimizing agent behavior through experience.
flow-nexus-neural
Train and deploy neural networks in distributed E2B sandboxes with Flow Nexus
Hooks Automation
Automated coordination, formatting, and learning from Claude Code operations using intelligent hooks with MCP integration. Includes pre/post task hooks, session management, Git integration, memory coordination, and neural pattern training for enhanced development workflows.