Backend
2720 skills in Development > Backend
at-dispatch-v2
Convert PyTorch AT_DISPATCH macros to AT_DISPATCH_V2 format in ATen C++ code. Use when porting AT_DISPATCH_ALL_TYPES_AND*, AT_DISPATCH_FLOATING_TYPES*, or other dispatch macros to the new v2 API. For ATen kernel files, CUDA kernels, and native operator implementations.
claude-opus-4-5-migration
Migrate prompts and code from Claude Sonnet 4.0, Sonnet 4.5, or Opus 4.1 to Opus 4.5. Use when the user wants to update their codebase, prompts, or API calls to use Opus 4.5. Handles model string updates and prompt adjustments for known Opus 4.5 behavioral differences. Does NOT migrate Haiku 4.5.
mcp-builder
Guide for creating high-quality MCP (Model Context Protocol) servers that enable LLMs to interact with external services through well-designed tools. Use when building MCP servers to integrate external APIs or services, whether in Python (FastMCP) or Node/TypeScript (MCP SDK).
api-design-principles
Master REST and GraphQL API design principles to build intuitive, scalable, and maintainable APIs that delight developers. Use when designing new APIs, reviewing API specifications, or establishing API design standards.
nodejs-backend-patterns
Build production-ready Node.js backend services with Express/Fastify, implementing middleware patterns, error handling, authentication, database integration, and API design best practices. Use when creating Node.js servers, REST APIs, GraphQL backends, or microservices architectures.
dotnet-backend-patterns
Master C#/.NET backend development patterns for building robust APIs, MCP servers, and enterprise applications. Covers async/await, dependency injection, Entity Framework Core, Dapper, configuration, caching, and testing with xUnit. Use when developing .NET backends, reviewing C# code, or designing API architectures.
architecture-patterns
Implement proven backend architecture patterns including Clean Architecture, Hexagonal Architecture, and Domain-Driven Design. Use when architecting complex backend systems or refactoring existing applications for better maintainability.
fastapi-templates
Create production-ready FastAPI projects with async patterns, dependency injection, and comprehensive error handling. Use when building new FastAPI applications or setting up backend API projects.
perplexity-search
Perform AI-powered web searches with real-time information using Perplexity models via LiteLLM and OpenRouter. This skill should be used when conducting web searches for current information, finding recent scientific literature, getting grounded answers with source citations, or accessing information beyond the model's knowledge cutoff. Provides access to multiple Perplexity models including Sonar Pro, Sonar Pro Search (advanced agentic search), and Sonar Reasoning Pro through a single OpenRouter API key.
pydeseq2
Differential gene expression analysis (Python DESeq2). Identify DE genes from bulk RNA-seq counts, Wald tests, FDR correction, volcano/MA plots, for RNA-seq analysis.
polars
Fast DataFrame library (Apache Arrow). Select, filter, group_by, joins, lazy evaluation, CSV/Parquet I/O, expression API, for high-performance data analysis workflows.
mcp-builder
Guide for creating high-quality MCP (Model Context Protocol) servers that enable LLMs to interact with external services through well-designed tools. Use when building MCP servers to integrate external APIs or services, whether in Python (FastMCP) or Node/TypeScript (MCP SDK).
uniprot-database
Direct REST API access to UniProt. Protein searches, FASTA retrieval, ID mapping, Swiss-Prot/TrEMBL. For Python workflows with multiple databases, prefer bioservices (unified interface to 40+ services). Use this for direct HTTP/REST work or UniProt-specific control.
scikit-survival
Comprehensive toolkit for survival analysis and time-to-event modeling in Python using scikit-survival. Use this skill when working with censored survival data, performing time-to-event analysis, fitting Cox models, Random Survival Forests, Gradient Boosting models, or Survival SVMs, evaluating survival predictions with concordance index or Brier score, handling competing risks, or implementing any survival analysis workflow with the scikit-survival library.
torch-geometric
Graph Neural Networks (PyG). Node/graph classification, link prediction, GCN, GAT, GraphSAGE, heterogeneous graphs, molecular property prediction, for geometric deep learning.
esm
Comprehensive toolkit for protein language models including ESM3 (generative multimodal protein design across sequence, structure, and function) and ESM C (efficient protein embeddings and representations). Use this skill when working with protein sequences, structures, or function prediction; designing novel proteins; generating protein embeddings; performing inverse folding; or conducting protein engineering tasks. Supports both local model usage and cloud-based Forge API for scalable inference.
protocolsio-integration
Integration with protocols.io API for managing scientific protocols. This skill should be used when working with protocols.io to search, create, update, or publish protocols; manage protocol steps and materials; handle discussions and comments; organize workspaces; upload and manage files; or integrate protocols.io functionality into workflows. Applicable for protocol discovery, collaborative protocol development, experiment tracking, lab protocol management, and scientific documentation.
cellxgene-census
Query CZ CELLxGENE Census (61M+ cells). Filter by cell type/tissue/disease, retrieve expression data, integrate with scanpy/PyTorch, for population-scale single-cell analysis.
arboreto
Infer gene regulatory networks (GRNs) from gene expression data using scalable algorithms (GRNBoost2, GENIE3). Use when analyzing transcriptomics data (bulk RNA-seq, single-cell RNA-seq) to identify transcription factor-target gene relationships and regulatory interactions. Supports distributed computation for large-scale datasets.
pubmed-database
Direct REST API access to PubMed. Advanced Boolean/MeSH queries, E-utilities API, batch processing, citation management. For Python workflows, prefer biopython (Bio.Entrez). Use this for direct HTTP/REST work or custom API implementations.