background-remover
Remove backgrounds from images using segmentation. Support for color-based, edge detection, and AI-assisted removal methods. Batch processing available.
$ Installieren
git clone https://github.com/dkyazzentwatwa/chatgpt-skills /tmp/chatgpt-skills && cp -r /tmp/chatgpt-skills/background-remover ~/.claude/skills/chatgpt-skills// tip: Run this command in your terminal to install the skill
SKILL.md
name: background-remover description: Remove backgrounds from images using segmentation. Support for color-based, edge detection, and AI-assisted removal methods. Batch processing available.
Background Remover
Remove backgrounds from images using multiple detection methods.
Features
- Color-Based Removal: Remove solid color backgrounds
- Edge Detection: Detect subject edges for removal
- GrabCut Algorithm: Interactive foreground extraction
- Batch Processing: Process multiple images
- Transparency Output: Export with alpha channel
- Background Replacement: Replace with color or image
Quick Start
from background_remover import BackgroundRemover
remover = BackgroundRemover()
# Simple removal
remover.load("photo.jpg")
remover.remove_background()
remover.save("photo_transparent.png")
# Remove specific color
remover.load("product.jpg")
remover.remove_color((255, 255, 255), tolerance=30) # Remove white
remover.save("product_clean.png")
# Replace background
remover.load("portrait.jpg")
remover.remove_background()
remover.replace_background(color=(0, 120, 255)) # Blue background
remover.save("portrait_blue.png")
CLI Usage
# Remove background (auto-detect)
python background_remover.py --input photo.jpg --output result.png
# Remove specific color
python background_remover.py --input image.jpg --color "255,255,255" --tolerance 30 -o clean.png
# Use GrabCut method
python background_remover.py --input photo.jpg --method grabcut -o result.png
# Replace background with color
python background_remover.py --input photo.jpg --replace-color "0,120,255" -o result.png
# Replace background with image
python background_remover.py --input photo.jpg --replace-image bg.jpg -o result.png
# Batch process
python background_remover.py --batch input_folder/ --output-dir output/ --method edge
API Reference
BackgroundRemover Class
class BackgroundRemover:
def __init__(self)
# Loading
def load(self, filepath: str) -> 'BackgroundRemover'
def load_array(self, array: np.ndarray) -> 'BackgroundRemover'
# Removal Methods
def remove_background(self, method: str = "auto") -> 'BackgroundRemover'
def remove_color(self, color: Tuple, tolerance: int = 20) -> 'BackgroundRemover'
def remove_edges(self, threshold: int = 50) -> 'BackgroundRemover'
def grabcut(self, rect: Tuple = None, iterations: int = 5) -> 'BackgroundRemover'
# Background Operations
def replace_background(self, color: Tuple = None, image: str = None) -> 'BackgroundRemover'
def add_shadow(self, offset: Tuple = (5, 5), blur: int = 10) -> 'BackgroundRemover'
# Refinement
def refine_edges(self, feather: int = 2) -> 'BackgroundRemover'
def expand_mask(self, pixels: int = 2) -> 'BackgroundRemover'
def contract_mask(self, pixels: int = 2) -> 'BackgroundRemover'
# Output
def save(self, filepath: str, quality: int = 95) -> str
def get_image(self) -> Image
def get_mask(self) -> Image
# Batch Processing
def batch_process(self, input_dir: str, output_dir: str,
method: str = "auto") -> List[str]
Removal Methods
Auto Detection
# Automatically choose best method
remover.remove_background(method="auto")
Color-Based Removal
# Remove white background
remover.remove_color((255, 255, 255), tolerance=30)
# Remove green screen
remover.remove_color((0, 255, 0), tolerance=50)
# Remove any solid color
remover.remove_color((200, 200, 200), tolerance=40)
Edge Detection
# Use edge detection to find subject
remover.remove_edges(threshold=50)
GrabCut (OpenCV)
# Full image GrabCut
remover.grabcut(iterations=5)
# With bounding rectangle hint
remover.grabcut(rect=(50, 50, 400, 300), iterations=10)
Background Replacement
Solid Color
remover.remove_background()
remover.replace_background(color=(255, 255, 255)) # White
remover.replace_background(color=(0, 0, 0)) # Black
remover.replace_background(color=(135, 206, 235)) # Sky blue
Image Background
remover.remove_background()
remover.replace_background(image="office_bg.jpg")
Transparent (Default)
remover.remove_background()
remover.save("transparent.png") # PNG preserves alpha
Edge Refinement
# Soften edges with feathering
remover.refine_edges(feather=3)
# Expand mask to include more area
remover.expand_mask(pixels=2)
# Contract mask for tighter crop
remover.contract_mask(pixels=2)
Example Workflows
Product Photography
remover = BackgroundRemover()
# Remove white studio background
remover.load("product_photo.jpg")
remover.remove_color((255, 255, 255), tolerance=25)
remover.refine_edges(feather=2)
remover.save("product_transparent.png")
Portrait Editing
remover = BackgroundRemover()
# Remove background from portrait
remover.load("portrait.jpg")
remover.grabcut(iterations=8)
remover.refine_edges(feather=3)
# Add professional background
remover.replace_background(color=(220, 220, 220))
remover.add_shadow(offset=(5, 5), blur=15)
remover.save("portrait_professional.jpg")
Green Screen Removal
remover = BackgroundRemover()
remover.load("greenscreen_video_frame.jpg")
remover.remove_color((0, 255, 0), tolerance=60)
remover.replace_background(image="virtual_bg.jpg")
remover.save("composited.jpg")
Batch Processing
remover = BackgroundRemover()
processed = remover.batch_process(
input_dir="product_photos/",
output_dir="processed/",
method="color",
color=(255, 255, 255),
tolerance=30
)
print(f"Processed {len(processed)} images")
Output Formats
- PNG: Preserves transparency (recommended)
- WEBP: Smaller file, supports alpha
- JPEG: No transparency (use with replace_background)
Tips for Best Results
- White/Solid Backgrounds: Use
remove_color()method - Complex Backgrounds: Use
grabcut()method - High Contrast Subjects: Edge detection works well
- Portraits: GrabCut with edge refinement
- Product Photos: Color removal with feathering
Limitations
- Best results with high contrast between subject and background
- Complex hair/fur edges may need manual touch-up
- Transparent or semi-transparent subjects are challenging
- Very busy backgrounds may require manual assistance
Dependencies
- pillow>=10.0.0
- opencv-python>=4.8.0
- numpy>=1.24.0
- scikit-image>=0.21.0
Repository

dkyazzentwatwa
Author
dkyazzentwatwa/chatgpt-skills/background-remover
1
Stars
0
Forks
Updated19h ago
Added6d ago