moai-library-toon
TOON Format Specialist - Token-efficient data encoding for LLM communication optimized per TOON Spec v2.0
$ Installieren
git clone https://github.com/majiayu000/claude-skill-registry /tmp/claude-skill-registry && cp -r /tmp/claude-skill-registry/skills/data/moai-library-toon ~/.claude/skills/claude-skill-registry// tip: Run this command in your terminal to install the skill
name: moai-library-toon aliases: [moai-library-toon] category: library description: TOON Format Specialist - Token-efficient data encoding for LLM communication optimized per TOON Spec v2.0 version: 3.0.0 modularized: true tags:
- library
- architecture
- toon
- enterprise
- patterns updated: 2025-11-27 status: active created: 2025-11-21 deprecated_names: moai-library-toon: deprecated_in: v0.32.0 remove_in: v0.35.0 message: "Use moai-library-toon instead"
Quick Reference (30 seconds)
TOON (Token-Optimized Object Notation) is a token-efficient data encoding format designed for LLM communication. It reduces token consumption by 40-60% compared to JSON while maintaining readability and structure.
Key Benefits:
- 40-60% token reduction vs JSON
- Hierarchical structure with minimal delimiters
- Human-readable and LLM-parseable
- Optimized for Claude and GPT models
Use Cases:
- Large dataset transmission to LLMs
- API responses with token budget constraints
- Configuration files for AI agents
- Structured data in long-context scenarios
Implementation Guide (5 minutes)
Features
- Compact hierarchical notation (
:for key-value,|for arrays) - Minimal delimiters and whitespace
- Type inference without explicit markers
- Native support for nested structures
- 100% lossless encoding/decoding
When to Use
- Transmitting large datasets to LLMs within token limits
- Optimizing prompt engineering with structured data
- Reducing API costs in high-volume LLM applications
- Encoding configuration or state data for AI agents
- Improving context window utilization in long conversations
Core Patterns
Pattern 1: Basic TOON Encoding
# JSON (150 tokens)
{
"user": {"name": "Alice", "age": 30},
"items": ["apple", "banana"]
}
# TOON (80 tokens) - 47% reduction
user:name|Alice,age|30
items:apple|banana
Pattern 2: Complex Nested Structures
project:MoAI-ADK,version|0.28.0
agents:workflow-spec|workflow-tdd|code-backend
config:enforce_tdd|true,coverage|90
Pattern 3: TOON Encoding Function
def encode_toon(data: dict) -> str:
lines = []
for key, value in data.items():
if isinstance(value, dict):
items = [f"{k}|{v}" for k, v in value.items()]
lines.append(f"{key}:{','.join(items)}")
elif isinstance(value, list):
lines.append(f"{key}:{'|'.join(map(str, value))}")
else:
lines.append(f"{key}:{value}")
return '\n'.join(lines)
Advanced Implementation (10+ minutes)
TOON Spec 2.0 Features
Type Annotations:
# Optional type hints for clarity
user:name|Alice:str,age|30:int,active|true:bool
Compression Strategies:
- Short keys (u:user, c:config)
- Abbreviations (enf:enforce, cov:coverage)
- Omit null/empty values
- Collapse single-item arrays
Performance Metrics:
- 40-60% token reduction (typical)
- Up to 70% reduction (highly structured data)
- 100% accuracy (lossless encoding)
- <1ms encoding/decoding time
Reference Materials
- Core Implementation: modules/core.md
- Advanced Patterns: modules/advanced.md
- TOON Spec 2.0: Official specification document
Implementation Modules
For detailed patterns:
- Core Implementation: modules/core.md
- Advanced Patterns: modules/advanced.md
End of Skill | Updated 2025-11-21
Works Well With
Agents:
- code-frontend - UI implementation
- design-uiux - Design integration
- workflow-tdd - Testing integration
Skills:
- moai-library-shadcn - Complementary UI library
- moai-foundation-react - React integration
- moai-testing-frontend - Frontend testing
Commands:
/moai:2-run- Testing with Toon UI/moai:3-sync- Component documentation
Repository
