moai-library-toon

TOON Format Specialist - Token-efficient data encoding for LLM communication optimized per TOON Spec v2.0

$ Installieren

git clone https://github.com/majiayu000/claude-skill-registry /tmp/claude-skill-registry && cp -r /tmp/claude-skill-registry/skills/data/moai-library-toon ~/.claude/skills/claude-skill-registry

// tip: Run this command in your terminal to install the skill


name: moai-library-toon aliases: [moai-library-toon] category: library description: TOON Format Specialist - Token-efficient data encoding for LLM communication optimized per TOON Spec v2.0 version: 3.0.0 modularized: true tags:

  • library
  • architecture
  • toon
  • enterprise
  • patterns updated: 2025-11-27 status: active created: 2025-11-21 deprecated_names: moai-library-toon: deprecated_in: v0.32.0 remove_in: v0.35.0 message: "Use moai-library-toon instead"

Quick Reference (30 seconds)

TOON (Token-Optimized Object Notation) is a token-efficient data encoding format designed for LLM communication. It reduces token consumption by 40-60% compared to JSON while maintaining readability and structure.

Key Benefits:

  • 40-60% token reduction vs JSON
  • Hierarchical structure with minimal delimiters
  • Human-readable and LLM-parseable
  • Optimized for Claude and GPT models

Use Cases:

  • Large dataset transmission to LLMs
  • API responses with token budget constraints
  • Configuration files for AI agents
  • Structured data in long-context scenarios

Implementation Guide (5 minutes)

Features

  • Compact hierarchical notation (: for key-value, | for arrays)
  • Minimal delimiters and whitespace
  • Type inference without explicit markers
  • Native support for nested structures
  • 100% lossless encoding/decoding

When to Use

  • Transmitting large datasets to LLMs within token limits
  • Optimizing prompt engineering with structured data
  • Reducing API costs in high-volume LLM applications
  • Encoding configuration or state data for AI agents
  • Improving context window utilization in long conversations

Core Patterns

Pattern 1: Basic TOON Encoding

# JSON (150 tokens)
{
  "user": {"name": "Alice", "age": 30},
  "items": ["apple", "banana"]
}

# TOON (80 tokens) - 47% reduction
user:name|Alice,age|30
items:apple|banana

Pattern 2: Complex Nested Structures

project:MoAI-ADK,version|0.28.0
agents:workflow-spec|workflow-tdd|code-backend
config:enforce_tdd|true,coverage|90

Pattern 3: TOON Encoding Function

def encode_toon(data: dict) -> str:
    lines = []
    for key, value in data.items():
        if isinstance(value, dict):
            items = [f"{k}|{v}" for k, v in value.items()]
            lines.append(f"{key}:{','.join(items)}")
        elif isinstance(value, list):
            lines.append(f"{key}:{'|'.join(map(str, value))}")
        else:
            lines.append(f"{key}:{value}")
    return '\n'.join(lines)

Advanced Implementation (10+ minutes)

TOON Spec 2.0 Features

Type Annotations:

# Optional type hints for clarity
user:name|Alice:str,age|30:int,active|true:bool

Compression Strategies:

  • Short keys (u:user, c:config)
  • Abbreviations (enf:enforce, cov:coverage)
  • Omit null/empty values
  • Collapse single-item arrays

Performance Metrics:

  • 40-60% token reduction (typical)
  • Up to 70% reduction (highly structured data)
  • 100% accuracy (lossless encoding)
  • <1ms encoding/decoding time

Reference Materials

  • Core Implementation: modules/core.md
  • Advanced Patterns: modules/advanced.md
  • TOON Spec 2.0: Official specification document

Implementation Modules

For detailed patterns:

  • Core Implementation: modules/core.md
  • Advanced Patterns: modules/advanced.md

End of Skill | Updated 2025-11-21


Works Well With

Agents:

  • code-frontend - UI implementation
  • design-uiux - Design integration
  • workflow-tdd - Testing integration

Skills:

  • moai-library-shadcn - Complementary UI library
  • moai-foundation-react - React integration
  • moai-testing-frontend - Frontend testing

Commands:

  • /moai:2-run - Testing with Toon UI
  • /moai:3-sync - Component documentation