Marketplace

system-design

Scalability, availability, and distributed systems design

$ Installieren

git clone https://github.com/miles990/claude-software-skills /tmp/claude-software-skills && cp -r /tmp/claude-software-skills/software-design/system-design ~/.claude/skills/claude-software-skills

// tip: Run this command in your terminal to install the skill


name: system-design description: Scalability, availability, and distributed systems design domain: software-design version: 1.0.0 tags: [scalability, availability, distributed, caching, load-balancing, database] triggers: keywords: primary: [system design, scalability, distributed, architecture, high availability] secondary: [load balancer, caching, sharding, replication, cap theorem, microservices] context_boost: [interview, scale, performance, infrastructure] context_penalty: [frontend, ui, mobile] priority: high

System Design

Overview

Principles for designing systems that handle scale, remain available, and perform well under load.


Scalability Fundamentals

Vertical vs Horizontal Scaling

Vertical Scaling (Scale Up):
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚  Bigger Server      โ”‚
โ”‚  - More CPU         โ”‚
โ”‚  - More RAM         โ”‚
โ”‚  - Faster disk      โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
Limit: Hardware ceiling

Horizontal Scaling (Scale Out):
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚Serverโ”‚ โ”‚Serverโ”‚ โ”‚Serverโ”‚ โ”‚Serverโ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
         โ†‘
    Load Balancer
Limit: Coordination complexity

Stateless Services

// โŒ Stateful - stores session in memory
class BadService {
  private sessions = new Map();

  login(userId: string) {
    this.sessions.set(userId, { loggedIn: true });
  }
}

// โœ… Stateless - external session store
class GoodService {
  constructor(private sessionStore: Redis) {}

  async login(userId: string) {
    await this.sessionStore.set(`session:${userId}`, { loggedIn: true });
  }
}

Load Balancing

Strategies

StrategyDescriptionUse Case
Round RobinCycle through serversEqual capacity servers
Weighted RRBased on server capacityMixed capacity
Least ConnectionsRoute to least busyLong-lived connections
IP HashSame IP โ†’ same serverSession stickiness
URL HashSame URL โ†’ same serverCache optimization

Health Checks

# Kubernetes-style health checks
livenessProbe:
  httpGet:
    path: /health/live
    port: 8080
  initialDelaySeconds: 3
  periodSeconds: 10

readinessProbe:
  httpGet:
    path: /health/ready
    port: 8080
  initialDelaySeconds: 5
  periodSeconds: 5
// Health check endpoints
app.get('/health/live', (req, res) => {
  // Am I running?
  res.status(200).json({ status: 'alive' });
});

app.get('/health/ready', async (req, res) => {
  // Can I serve traffic?
  const dbOk = await checkDatabase();
  const cacheOk = await checkCache();

  if (dbOk && cacheOk) {
    res.status(200).json({ status: 'ready' });
  } else {
    res.status(503).json({ status: 'not ready', db: dbOk, cache: cacheOk });
  }
});

Caching Strategies

Cache Patterns

Cache-Aside (Lazy Loading):
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”    miss     โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚  App   โ”‚ โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ†’ โ”‚  Cache โ”‚
โ”‚        โ”‚ โ†โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ โ”‚        โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜    null     โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
    โ”‚
    โ”‚  read
    โ†“
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚   DB   โ”‚  โ”€โ”€โ”€โ”€ write โ”€โ”€โ†’ Cache
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

Write-Through:
App โ†’ Cache โ†’ DB (synchronous)

Write-Behind (Write-Back):
App โ†’ Cache โ†’ (async) โ†’ DB
// Cache-aside implementation
class CachedUserService {
  constructor(
    private cache: Redis,
    private db: Database
  ) {}

  async getUser(id: string): Promise<User> {
    // Try cache first
    const cached = await this.cache.get(`user:${id}`);
    if (cached) return JSON.parse(cached);

    // Cache miss - read from DB
    const user = await this.db.users.findById(id);
    if (user) {
      // Store in cache with TTL
      await this.cache.set(`user:${id}`, JSON.stringify(user), 'EX', 3600);
    }
    return user;
  }

  async updateUser(id: string, data: Partial<User>): Promise<User> {
    const user = await this.db.users.update(id, data);
    // Invalidate cache
    await this.cache.del(`user:${id}`);
    return user;
  }
}

Cache Invalidation

StrategyDescriptionComplexity
TTLExpire after timeSimple
Event-basedInvalidate on writeMedium
Version-basedKey includes versionMedium
Tag-basedGroup related keysComplex

Database Scaling

Read Replicas

                    โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
     Writes โ”€โ”€โ”€โ”€โ”€โ”€โ†’ โ”‚   Primary DB    โ”‚
                    โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
                             โ”‚ replication
           โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
           โ†“                 โ†“                 โ†“
    โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”      โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”      โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
    โ”‚ Replica 1โ”‚      โ”‚ Replica 2โ”‚      โ”‚ Replica 3โ”‚
    โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜      โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜      โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
           โ†‘                 โ†‘                 โ†‘
           โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€ Reads โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

Sharding (Partitioning)

// Hash-based sharding
function getShard(userId: string, numShards: number): number {
  const hash = crypto.createHash('md5').update(userId).digest('hex');
  return parseInt(hash.slice(0, 8), 16) % numShards;
}

// Range-based sharding
function getShardByDate(date: Date): string {
  const year = date.getFullYear();
  const month = date.getMonth() + 1;
  return `orders_${year}_${month.toString().padStart(2, '0')}`;
}

// Consistent hashing for dynamic shards
class ConsistentHash {
  private ring: Map<number, string> = new Map();

  addNode(node: string) {
    for (let i = 0; i < 150; i++) { // Virtual nodes
      const hash = this.hash(`${node}:${i}`);
      this.ring.set(hash, node);
    }
  }

  getNode(key: string): string {
    const hash = this.hash(key);
    // Find next node on ring
    for (const [nodeHash, node] of [...this.ring.entries()].sort()) {
      if (nodeHash >= hash) return node;
    }
    return this.ring.values().next().value;
  }
}

Message Queues

Patterns

Point-to-Point:
Producer โ†’ Queue โ†’ Consumer

Pub/Sub:
              โ”Œโ”€โ†’ Subscriber 1
Publisher โ†’ Topic โ”€โ†’ Subscriber 2
              โ””โ”€โ†’ Subscriber 3

Work Queue:
              โ”Œโ”€โ†’ Worker 1
Producer โ†’ Queue โ”€โ†’ Worker 2  (competing consumers)
              โ””โ”€โ†’ Worker 3

Delivery Guarantees

GuaranteeDescriptionImplementation
At-most-onceMay lose messagesFire and forget
At-least-onceMay duplicateAck after process
Exactly-onceNo loss, no dupeIdempotency + dedup
// Idempotent processing
async function processOrder(event: OrderEvent) {
  // Check if already processed
  const processed = await redis.get(`processed:${event.id}`);
  if (processed) {
    console.log(`Already processed ${event.id}`);
    return;
  }

  // Process the order
  await db.orders.create(event.order);

  // Mark as processed (with TTL for cleanup)
  await redis.set(`processed:${event.id}`, '1', 'EX', 86400 * 7);
}

High Availability

Redundancy Patterns

Active-Active:
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”     โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚Server Aโ”‚ โ†โ”€โ†’ โ”‚Server Bโ”‚  Both handle traffic
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜     โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

Active-Passive:
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”     โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ Active โ”‚ โ”€โ”€โ†’ โ”‚Standby โ”‚  Failover on failure
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜     โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

Circuit Breaker

class CircuitBreaker {
  private failures = 0;
  private lastFailure: Date | null = null;
  private state: 'closed' | 'open' | 'half-open' = 'closed';

  constructor(
    private threshold: number = 5,
    private timeout: number = 30000
  ) {}

  async execute<T>(fn: () => Promise<T>): Promise<T> {
    if (this.state === 'open') {
      if (Date.now() - this.lastFailure!.getTime() > this.timeout) {
        this.state = 'half-open';
      } else {
        throw new Error('Circuit is open');
      }
    }

    try {
      const result = await fn();
      this.onSuccess();
      return result;
    } catch (error) {
      this.onFailure();
      throw error;
    }
  }

  private onSuccess() {
    this.failures = 0;
    this.state = 'closed';
  }

  private onFailure() {
    this.failures++;
    this.lastFailure = new Date();
    if (this.failures >= this.threshold) {
      this.state = 'open';
    }
  }
}

CAP Theorem

         Consistency
            /\
           /  \
          /    \
         /      \
        /   CA   \
       /โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€\
      /            \
     / CP        AP \
    /________________\
Partition          Availability
Tolerance

CA: Single node (RDBMS)
CP: MongoDB, HBase (may reject writes during partition)
AP: Cassandra, DynamoDB (eventual consistency)

Consistency Models

ModelDescriptionExample
StrongRead sees latest writeRDBMS
EventualEventually consistentDNS, Cassandra
CausalRespects causalityChat apps
Read-your-writesSee your own writesSocial feeds

Rate Limiting

Algorithms

// Token Bucket
class TokenBucket {
  private tokens: number;
  private lastRefill: number;

  constructor(
    private capacity: number,
    private refillRate: number // tokens per second
  ) {
    this.tokens = capacity;
    this.lastRefill = Date.now();
  }

  consume(tokens: number = 1): boolean {
    this.refill();
    if (this.tokens >= tokens) {
      this.tokens -= tokens;
      return true;
    }
    return false;
  }

  private refill() {
    const now = Date.now();
    const elapsed = (now - this.lastRefill) / 1000;
    this.tokens = Math.min(
      this.capacity,
      this.tokens + elapsed * this.refillRate
    );
    this.lastRefill = now;
  }
}

// Sliding Window
class SlidingWindowRateLimiter {
  constructor(
    private redis: Redis,
    private limit: number,
    private window: number // seconds
  ) {}

  async isAllowed(key: string): Promise<boolean> {
    const now = Date.now();
    const windowStart = now - this.window * 1000;

    const pipe = this.redis.pipeline();
    pipe.zremrangebyscore(key, 0, windowStart);
    pipe.zadd(key, now, `${now}`);
    pipe.zcard(key);
    pipe.expire(key, this.window);

    const results = await pipe.exec();
    const count = results[2][1] as number;

    return count <= this.limit;
  }
}

Common System Designs

SystemKey Components
URL ShortenerHash function, Redis cache, DB
Twitter FeedFan-out, Redis timeline, Kafka
Chat AppWebSocket, Presence, Message queue
E-commerceCart service, Inventory, Payment
Video StreamingCDN, Chunking, Adaptive bitrate

Related Skills

  • [[architecture-patterns]] - Microservices, event-driven
  • [[database]] - Database optimization
  • [[caching-implementation]] - Cache strategies
  • [[reliability-engineering]] - SRE practices