Marketplace

database-sharding

Database sharding for PostgreSQL/MySQL with hash/range/directory strategies. Use for horizontal scaling, multi-tenant isolation, billions of records, or encountering wrong shard keys, hotspots, cross-shard transactions, rebalancing issues.

$ Installieren

git clone https://github.com/secondsky/claude-skills /tmp/claude-skills && cp -r /tmp/claude-skills/plugins/database-sharding/skills/database-sharding ~/.claude/skills/claude-skills

// tip: Run this command in your terminal to install the skill


name: database-sharding description: Database sharding for PostgreSQL/MySQL with hash/range/directory strategies. Use for horizontal scaling, multi-tenant isolation, billions of records, or encountering wrong shard keys, hotspots, cross-shard transactions, rebalancing issues. keywords: database sharding, horizontal partitioning, shard key, consistent hashing, hash sharding, range sharding, directory sharding, cross-shard queries, shard rebalancing, scatter-gather pattern, multi-tenant sharding, shard router, distributed database, database scalability, shard migration, hotspot shards, shard key selection, cross-shard aggregation, two-phase commit, saga pattern, virtual shards license: MIT

database-sharding

Comprehensive database sharding patterns for horizontal scaling with hash, range, and directory-based strategies.


Quick Start (10 Minutes)

Step 1: Choose sharding strategy from templates:

# Hash-based (even distribution)
cat templates/hash-router.ts

# Range-based (time-series data)
cat templates/range-router.ts

# Directory-based (multi-tenancy)
cat templates/directory-router.ts

Step 2: Select shard key criteria:

  • ✅ High cardinality (millions of unique values)
  • ✅ Even distribution (no single value > 5%)
  • ✅ Immutable (never changes)
  • ✅ Query alignment (in 80%+ of WHERE clauses)

Step 3: Implement router:

import { HashRouter } from './hash-router';

const router = new HashRouter([
  { id: 'shard_0', connection: { host: 'db0.example.com' } },
  { id: 'shard_1', connection: { host: 'db1.example.com' } },
  { id: 'shard_2', connection: { host: 'db2.example.com' } },
  { id: 'shard_3', connection: { host: 'db3.example.com' } },
]);

// Query single shard
const user = await router.query('user_123', 'SELECT * FROM users WHERE id = $1', ['user_123']);

Critical Rules

✓ Always Do

RuleReason
Include shard key in queriesAvoid scanning all shards (100x slower)
Monitor shard distributionDetect hotspots before they cause outages
Plan for rebalancing upfrontCannot easily add shards later
Choose immutable shard keyChanging key = data migration nightmare
Test distribution with production dataSynthetic data hides real hotspots
Denormalize for data localityKeep related data on same shard

✗ Never Do

Anti-PatternWhy It's Bad
Sequential ID with range shardingLatest shard gets all writes (hotspot)
Timestamp as shard keyRecent shard overwhelmed
Cross-shard transactions without 2PCData corruption, inconsistency
Simple modulo without consistent hashingCannot add shards without full re-shard
Nullable shard keySpecial NULL handling creates hotspots
No shard routing layerHardcoded shards = cannot rebalance

Top 7 Critical Errors

Error 1: Wrong Shard Key Choice (Hotspots)

Symptom: One shard receives 80%+ of traffic Fix:

// ❌ Bad: Low cardinality (status field)
shard_key = order.status; // 90% are 'pending' → shard_0 overloaded

// ✅ Good: High cardinality (user_id)
shard_key = order.user_id; // Millions of users, even distribution

Error 2: Missing Shard Key in Queries

Symptom: Queries scan ALL shards (extremely slow) Fix:

// ❌ Bad: No shard key
SELECT * FROM orders WHERE status = 'shipped'; // Scans all 100 shards!

// ✅ Good: Include shard key
SELECT * FROM orders WHERE user_id = ? AND status = 'shipped'; // Targets 1 shard

Error 3: Sequential IDs with Range Sharding

Symptom: Latest shard gets all writes Fix:

// ❌ Bad: Range sharding with auto-increment
// Shard 0: 1-1M, Shard 1: 1M-2M, Shard 2: 2M+ → All new writes to Shard 2!

// ✅ Good: Hash-based sharding
const shardId = hash(id) % shardCount; // Even distribution

Error 4: No Rebalancing Strategy

Symptom: Stuck with initial shard count, cannot scale Fix:

// ❌ Bad: Simple modulo
const shardId = hash(key) % shardCount; // Adding 5th shard breaks ALL keys

// ✅ Good: Consistent hashing
const ring = new ConsistentHashRing(shards);
const shardId = ring.getNode(key); // Only ~25% of keys move when adding shard

Error 5: Cross-Shard Transactions

Symptom: Data inconsistency, partial writes Fix:

// ❌ Bad: Cross-shard transaction (will corrupt)
BEGIN;
UPDATE shard_1.accounts SET balance = balance - 100 WHERE id = 'A';
UPDATE shard_2.accounts SET balance = balance + 100 WHERE id = 'B';
COMMIT; // If shard_2 fails, shard_1 already committed!

// ✅ Good: Two-Phase Commit or Saga pattern
const txn = new TwoPhaseCommitTransaction();
txn.addOperation(shard_1, 'UPDATE accounts SET balance = balance - 100 WHERE id = ?', ['A']);
txn.addOperation(shard_2, 'UPDATE accounts SET balance = balance + 100 WHERE id = ?', ['B']);
await txn.execute(); // Atomic across shards

Error 6: Mutable Shard Key

Symptom: Records move shards, causing duplicates Fix:

// ❌ Bad: Shard by country (user relocates)
shard_key = user.country; // User moves US → CA, now in different shard!

// ✅ Good: Shard by immutable user_id
shard_key = user.id; // Never changes

Error 7: No Monitoring

Symptom: Silent hotspots, sudden performance degradation Fix:

// ✅ Required metrics
- Per-shard record counts (should be within 20%)
- Query distribution (no shard > 40% of queries)
- Storage per shard (alert at 80%)
- Latency p99 per shard

Load references/error-catalog.md for all 10 errors with detailed fixes.


Sharding Strategies

StrategyBest ForProsCons
HashUser data, even load criticalNo hotspots, predictableRange queries scatter
RangeTime-series, logs, append-onlyRange queries efficient, archivalRecent shard hotspot
DirectoryMulti-tenancy, complex routingFlexible, easy rebalancingLookup overhead, SPOF

Load references/sharding-strategies.md for detailed comparisons with production examples (Instagram, Discord, Salesforce).


Shard Key Selection Criteria

CriterionImportanceCheck Method
High cardinalityCriticalCOUNT(DISTINCT shard_key) > shard_count × 100
Even distributionCriticalNo value > 5% of total
ImmutableCriticalValue never changes
Query alignmentHigh80%+ queries include it
Data localityMediumRelated records together

Decision Tree:

  • User-focused app → user_id
  • Multi-tenant SaaS → tenant_id
  • Time-series/logs → timestamp (range sharding)
  • Product catalog → product_id

Load references/shard-key-selection.md for comprehensive decision trees and testing strategies.


Configuration Summary

Hash-Based Router

import { HashRouter } from './templates/hash-router';

const router = new HashRouter([
  { id: 'shard_0', connection: { /* PostgreSQL config */ } },
  { id: 'shard_1', connection: { /* PostgreSQL config */ } },
]);

// Automatically routes to correct shard
const user = await router.query('user_123', 'SELECT * FROM users WHERE id = $1', ['user_123']);

Range-Based Router

import { RangeRouter } from './templates/range-router';

const router = new RangeRouter(shardConfigs, [
  { start: Date.parse('2024-01-01'), end: Date.parse('2024-04-01'), shardId: 'shard_q1' },
  { start: Date.parse('2024-04-01'), end: Date.parse('2024-07-01'), shardId: 'shard_q2' },
  { start: Date.parse('2024-07-01'), end: Infinity, shardId: 'shard_q3' },
]);

// Range queries target specific shards
const janEvents = await router.queryRange(
  Date.parse('2024-01-01'),
  Date.parse('2024-02-01'),
  'SELECT * FROM events WHERE created_at BETWEEN $1 AND $2'
);

Directory-Based Router

import { DirectoryRouter } from './templates/directory-router';

const router = new DirectoryRouter(directoryDBConfig, shardConfigs);

// Assign tenant to specific shard
await router.assignShard('tenant_acme', 'shard_enterprise');

// Route automatically
const users = await router.query('tenant_acme', 'SELECT * FROM users');

When to Load References

Choosing Strategy

Load references/sharding-strategies.md when:

  • Deciding between hash, range, directory
  • Need production examples (Instagram, Discord)
  • Planning hybrid approaches

Selecting Shard Key

Load references/shard-key-selection.md when:

  • Choosing shard key for new project
  • Evaluating existing shard key
  • Testing distribution with production data

Implementation

Load references/implementation-patterns.md when:

  • Building shard router from scratch
  • Implementing consistent hashing
  • Need transaction handling (2PC, Saga)
  • Setting up monitoring/metrics

Cross-Shard Operations

Load references/cross-shard-queries.md when:

  • Need to aggregate across shards (COUNT, SUM, AVG)
  • Implementing cross-shard joins
  • Building pagination across shards
  • Optimizing scatter-gather patterns

Rebalancing

Load references/rebalancing-guide.md when:

  • Adding new shards
  • Migrating data between shards
  • Planning zero-downtime migrations
  • Balancing uneven load

Error Prevention

Load references/error-catalog.md when:

  • Troubleshooting performance issues
  • Reviewing shard architecture
  • All 10 documented errors with fixes

Complete Setup Checklist

Before Sharding:

  • Tested shard key distribution with production data
  • Shard key in 80%+ of queries
  • Monitoring infrastructure ready
  • Rebalancing strategy planned

Router Implementation:

  • Shard routing layer (not hardcoded shards)
  • Connection pooling per shard
  • Error handling and retries
  • Metrics collection (queries/shard, latency)

Shard Configuration:

  • 4-8 shards initially (room to grow)
  • Consistent hashing or virtual shards
  • Replicas per shard (HA)
  • Backup strategy per shard

Application Changes:

  • All queries include shard key
  • Cross-shard joins eliminated (denormalized)
  • Transaction boundaries respected
  • Connection pooling configured

Production Example

Before (Single database overwhelmed):

// Single PostgreSQL instance
const db = new Pool({ host: 'db.example.com' });

// All 10M users on one server
const users = await db.query('SELECT * FROM users WHERE status = $1', ['active']);
// Query time: 5000ms (slow!)
// DB CPU: 95%
// Disk: 500GB, growing

After (Sharded across 8 servers):

// Hash-based sharding with 8 shards
const router = new HashRouter([
  { id: 'shard_0', connection: { host: 'db0.example.com' } },
  { id: 'shard_1', connection: { host: 'db1.example.com' } },
  // ... 6 more shards
]);

// Query single user (targets 1 shard)
const user = await router.query('user_123', 'SELECT * FROM users WHERE id = $1', ['user_123']);
// Query time: 10ms (500x faster!)

// Query all shards (scatter-gather)
const allActive = await router.queryAll('SELECT * FROM users WHERE status = $1', ['active']);
// Query time: 800ms (parallelized across 8 shards, 6x faster than single)

// Result: Each shard handles ~1.25M users
// DB CPU per shard: 20%
// Disk per shard: 65GB
// Can scale to 16 shards easily (consistent hashing)

Known Issues Prevention

All 10 documented errors prevented:

  1. ✅ Wrong shard key (hotspots) → Test distribution first
  2. ✅ Missing shard key in queries → Code review, linting
  3. ✅ Cross-shard transactions → Use 2PC or Saga pattern
  4. ✅ Sequential ID hotspots → Use hash-based sharding
  5. ✅ No rebalancing strategy → Consistent hashing from day 1
  6. ✅ Timestamp sharding hotspots → Hybrid hash+range approach
  7. ✅ Mutable shard key → Choose immutable keys (user_id)
  8. ✅ No routing layer → Abstract with router from start
  9. ✅ No monitoring → Track per-shard metrics
  10. ✅ Weak hash function → Use MD5, MurmurHash3, xxHash

See: references/error-catalog.md for detailed fixes


Resources

Templates:

  • templates/hash-router.ts - Hash-based sharding
  • templates/range-router.ts - Range-based sharding
  • templates/directory-router.ts - Directory-based sharding
  • templates/cross-shard-aggregation.ts - Aggregation patterns

References:

  • references/sharding-strategies.md - Strategy comparison
  • references/shard-key-selection.md - Key selection guide
  • references/implementation-patterns.md - Router implementations
  • references/cross-shard-queries.md - Query patterns
  • references/rebalancing-guide.md - Migration strategies
  • references/error-catalog.md - All 10 errors documented

Production Examples:

  • Instagram: Range sharding for media
  • Discord: Hash sharding for messages
  • Salesforce: Directory sharding for orgs

Production-tested | 10 errors prevented | MIT License