python-patterns
Python development principles and decision-making. Framework selection, async patterns, type hints, project structure. Teaches thinking, not copying.
$ Installieren
git clone https://github.com/xenitV1/claude-code-maestro /tmp/claude-code-maestro && cp -r /tmp/claude-code-maestro/skills/python-patterns ~/.claude/skills/claude-code-maestro// tip: Run this command in your terminal to install the skill
SKILL.md
name: python-patterns description: Python development principles and decision-making. Framework selection, async patterns, type hints, project structure. Teaches thinking, not copying.
Python Patterns
Python development principles and decision-making for 2025. Learn to THINK, not memorize patterns.
⚠️ How to Use This Skill
This skill teaches decision-making principles, not fixed code to copy.
- ASK user for framework preference when unclear
- Choose async vs sync based on CONTEXT
- Don't default to same framework every time
1. Framework Selection (2025)
Decision Tree
What are you building?
│
├── API-first / Microservices
│ └── FastAPI (async, modern, fast)
│
├── Full-stack web / CMS / Admin
│ └── Django (batteries-included)
│
├── Simple / Script / Learning
│ └── Flask (minimal, flexible)
│
├── AI/ML API serving
│ └── FastAPI (Pydantic, async, uvicorn)
│
└── Background workers
└── Celery + any framework
Comparison Principles
| Factor | FastAPI | Django | Flask |
|---|---|---|---|
| Best for | APIs, microservices | Full-stack, CMS | Simple, learning |
| Async | Native | Django 5.0+ | Via extensions |
| Admin | Manual | Built-in | Via extensions |
| ORM | Choose your own | Django ORM | Choose your own |
| Learning curve | Low | Medium | Low |
Selection Questions to Ask:
- Is this API-only or full-stack?
- Need admin interface?
- Team familiar with async?
- Existing infrastructure?
2. Async vs Sync Decision
When to Use Async
async def is better when:
├── I/O-bound operations (database, HTTP, file)
├── Many concurrent connections
├── Real-time features
├── Microservices communication
└── FastAPI/Starlette/Django ASGI
def (sync) is better when:
├── CPU-bound operations
├── Simple scripts
├── Legacy codebase
├── Team unfamiliar with async
└── Blocking libraries (no async version)
The Golden Rule
I/O-bound → async (waiting for external)
CPU-bound → sync + multiprocessing (computing)
Don't:
├── Mix sync and async carelessly
├── Use sync libraries in async code
└── Force async for CPU work
Async Library Selection
| Need | Async Library |
|---|---|
| HTTP client | httpx |
| PostgreSQL | asyncpg |
| Redis | aioredis / redis-py async |
| File I/O | aiofiles |
| Database ORM | SQLAlchemy 2.0 async, Tortoise |
3. Type Hints Strategy
When to Type
Always type:
├── Function parameters
├── Return types
├── Class attributes
├── Public APIs
Can skip:
├── Local variables (let inference work)
├── One-off scripts
├── Tests (usually)
Common Type Patterns
# These are patterns, understand them:
# Optional → might be None
from typing import Optional
def find_user(id: int) -> Optional[User]: ...
# Union → one of multiple types
def process(data: str | dict) -> None: ...
# Generic collections
def get_items() -> list[Item]: ...
def get_mapping() -> dict[str, int]: ...
# Callable
from typing import Callable
def apply(fn: Callable[[int], str]) -> str: ...
Pydantic for Validation
When to use Pydantic:
├── API request/response models
├── Configuration/settings
├── Data validation
├── Serialization
Benefits:
├── Runtime validation
├── Auto-generated JSON schema
├── Works with FastAPI natively
└── Clear error messages
4. Project Structure Principles
Structure Selection
Small project / Script:
├── main.py
├── utils.py
└── requirements.txt
Medium API:
├── app/
│ ├── __init__.py
│ ├── main.py
│ ├── models/
│ ├── routes/
│ ├── services/
│ └── schemas/
├── tests/
└── pyproject.toml
Large application:
├── src/
│ └── myapp/
│ ├── core/
│ ├── api/
│ ├── services/
│ ├── models/
│ └── ...
├── tests/
└── pyproject.toml
FastAPI Structure Principles
Organize by feature or layer:
By layer:
├── routes/ (API endpoints)
├── services/ (business logic)
├── models/ (database models)
├── schemas/ (Pydantic models)
└── dependencies/ (shared deps)
By feature:
├── users/
│ ├── routes.py
│ ├── service.py
│ └── schemas.py
└── products/
└── ...
5. Django Principles (2025)
Django Async (Django 5.0+)
Django supports async:
├── Async views
├── Async middleware
├── Async ORM (limited)
└── ASGI deployment
When to use async in Django:
├── External API calls
├── WebSocket (Channels)
├── High-concurrency views
└── Background task triggering
Django Best Practices
Model design:
├── Fat models, thin views
├── Use managers for common queries
├── Abstract base classes for shared fields
Views:
├── Class-based for complex CRUD
├── Function-based for simple endpoints
├── Use viewsets with DRF
Queries:
├── select_related() for FKs
├── prefetch_related() for M2M
├── Avoid N+1 queries
└── Use .only() for specific fields
6. FastAPI Principles
async def vs def in FastAPI
Use async def when:
├── Using async database drivers
├── Making async HTTP calls
├── I/O-bound operations
└── Want to handle concurrency
Use def when:
├── Blocking operations
├── Sync database drivers
├── CPU-bound work
└── FastAPI runs in threadpool automatically
Dependency Injection
Use dependencies for:
├── Database sessions
├── Current user / Auth
├── Configuration
├── Shared resources
Benefits:
├── Testability (mock dependencies)
├── Clean separation
├── Automatic cleanup (yield)
Pydantic v2 Integration
# FastAPI + Pydantic are tightly integrated:
# Request validation
@app.post("/users")
async def create(user: UserCreate) -> UserResponse:
# user is already validated
...
# Response serialization
# Return type becomes response schema
7. Background Tasks
Selection Guide
| Solution | Best For |
|---|---|
| BackgroundTasks | Simple, in-process tasks |
| Celery | Distributed, complex workflows |
| ARQ | Async, Redis-based |
| RQ | Simple Redis queue |
| Dramatiq | Actor-based, simpler than Celery |
When to Use Each
FastAPI BackgroundTasks:
├── Quick operations
├── No persistence needed
├── Fire-and-forget
└── Same process
Celery/ARQ:
├── Long-running tasks
├── Need retry logic
├── Distributed workers
├── Persistent queue
└── Complex workflows
8. Error Handling Principles
Exception Strategy
In FastAPI:
├── Create custom exception classes
├── Register exception handlers
├── Return consistent error format
└── Log without exposing internals
Pattern:
├── Raise domain exceptions in services
├── Catch and transform in handlers
└── Client gets clean error response
Error Response Philosophy
Include:
├── Error code (programmatic)
├── Message (human readable)
├── Details (field-level when applicable)
└── NOT stack traces (security)
9. Testing Principles
Testing Strategy
| Type | Purpose | Tools |
|---|---|---|
| Unit | Business logic | pytest |
| Integration | API endpoints | pytest + httpx/TestClient |
| E2E | Full workflows | pytest + DB |
Async Testing
# Use pytest-asyncio for async tests
import pytest
from httpx import AsyncClient
@pytest.mark.asyncio
async def test_endpoint():
async with AsyncClient(app=app, base_url="http://test") as client:
response = await client.get("/users")
assert response.status_code == 200
Fixtures Strategy
Common fixtures:
├── db_session → Database connection
├── client → Test client
├── authenticated_user → User with token
└── sample_data → Test data setup
10. Decision Checklist
Before implementing:
- Asked user about framework preference?
- Chosen framework for THIS context? (not just default)
- Decided async vs sync?
- Planned type hint strategy?
- Defined project structure?
- Planned error handling?
- Considered background tasks?
11. Anti-Patterns to Avoid
❌ DON'T:
- Default to Django for simple APIs (FastAPI may be better)
- Use sync libraries in async code
- Skip type hints for public APIs
- Put business logic in routes/views
- Ignore N+1 queries
- Mix async and sync carelessly
✅ DO:
- Choose framework based on context
- Ask about async requirements
- Use Pydantic for validation
- Separate concerns (routes → services → repos)
- Test critical paths
Remember: Python patterns are about decision-making for YOUR specific context. Don't copy code—think about what serves your application best.
Repository

xenitV1
Author
xenitV1/claude-code-maestro/skills/python-patterns
62
Stars
15
Forks
Updated5d ago
Added6d ago