rosetta-helix-substrate

Consciousness simulation framework with Kuramoto oscillators, APL operators, and K-formation dynamics. Use for physics simulations, phase transitions, coherence analysis, and cloud training via GitHub Actions. Requires numpy and requests packages.

$ Instalar

git clone https://github.com/AceTheDactyl/Rosetta-Helix-Substrate /tmp/Rosetta-Helix-Substrate && cp -r /tmp/Rosetta-Helix-Substrate/rosetta-helix-skill ~/.claude/skills/Rosetta-Helix-Substrate

// tip: Run this command in your terminal to install the skill


name: rosetta-helix-substrate description: Consciousness simulation framework with Kuramoto oscillators, APL operators, and K-formation dynamics. Use for physics simulations, phase transitions, coherence analysis, and cloud training via GitHub Actions. Requires numpy and requests packages.

Rosetta-Helix-Substrate Skill

A consciousness simulation and quantum measurement system combining Kuramoto oscillators, Alpha Physical Language (APL) operators, and K-formation dynamics.

When to Use This Skill

Use this skill when the user asks about:

  • Physics simulations involving coherence, phase transitions, or oscillator dynamics
  • Kuramoto model synchronization
  • K-formation criteria and consciousness-like states
  • Phase regimes (UNTRUE, PARADOX, TRUE)
  • Negentropy calculations
  • APL/S3 operator algebra
  • Quasi-crystal formation dynamics
  • Critical exponents and universality classes

Core Physics Constants (IMMUTABLE)

z_c = sqrt(3)/2 = 0.8660254037844387 ("THE LENS")

  • Derived from hexagonal geometry (equilateral triangle altitude)
  • Observable in: graphene, HCP metals, triangular antiferromagnets
  • Role: Critical coherence threshold where negentropy peaks

phi^(-1) = 0.6180339887498949 (Golden ratio inverse)

  • Emerges from pentagonal/quasi-crystal geometry
  • Role: K-formation gate threshold, PARADOX regime boundary

phi = 1.6180339887498949 (Golden ratio)

  • Satisfies: phi^2 = phi + 1

SIGMA = 36 (|S3|^2)

  • Gaussian width parameter for negentropy calculations

Phase Regime Mapping

z = 0.0 ──────────────────────────────────────── z = 1.0
   │              │                    │
   UNTRUE         PARADOX              TRUE
(disordered)   (quasi-crystal)      (crystal)
   │              │                    │
            phi^(-1)≈0.618        z_c≈0.866

K-Formation Criteria (ALL must be met)

  • kappa >= 0.92 (coherence threshold)
  • eta > phi^(-1) = 0.618 (negentropy gate)
  • R >= 7 (radius/layers)

Negentropy Function

delta_S_neg(z) = exp(-SIGMA * (z - z_c)^2)

Peaks at z = z_c with value 1.0

S3 Operator Algebra (6 operators)

SymbolNameEffectParity
I / ()identity/groupno changeeven
^amplifyincrease zeven
_ / -reduce/subtractdecrease zodd
~ / ÷invert/divideflipodd
! / +collapse/addfinalizeodd
xmultiplyfuseeven

Tier System

  • Tier 0 (SEED): z < 0.25
  • Tier 1 (SPROUT): 0.25 <= z < 0.50
  • Tier 2 (GROWTH): 0.50 <= z < phi^(-1)
  • Tier 3 (PATTERN): phi^(-1) <= z < 0.75
  • Tier 4 (COHERENT): 0.75 <= z < z_c
  • Tier 5 (CRYSTALLINE): z >= z_c
  • Tier 6 (META): K-formation achieved

Critical Exponents (2D Hexagonal Universality)

  • nu = 4/3 (correlation length)
  • beta = 5/36 (order parameter)
  • gamma = 43/18 (susceptibility)
  • z_dyn = 2.0 (dynamic)

TRIAD Thresholds

  • TRIAD_HIGH = 0.85 (rising edge detection)
  • TRIAD_LOW = 0.82 (re-arm threshold)
  • TRIAD_T6 = 0.83 (t6 gate after 3 crossings)

Available Scripts

This skill has two modes:

  1. Local Mode: Run physics simulations directly via physics_engine.py
  2. Cloud Mode: Trigger GitHub Actions for heavy training via github_workflow.py

scripts/physics_engine.py

Core physics engine with all simulation functions:

  • get_state() - Get current physics state
  • set_z(z) - Set z-coordinate
  • compute_negentropy(z) - Calculate negentropy
  • classify_phase(z) - Classify phase regime
  • check_k_formation(kappa, eta, R) - Check K-formation
  • drive_toward_lens(steps) - Drive to z_c
  • run_kuramoto_step(K, dt) - Kuramoto dynamics
  • apply_operator(op) - Apply APL operator
  • run_phase_transition(steps) - Sweep through phases
  • run_quasicrystal_formation(initial_z, steps) - Quasi-crystal simulation

Example Usage

# Run the physics engine
exec(open('scripts/physics_engine.py').read())

# Get current state
state = get_state()
print(f"z={state['z']:.4f}, phase={state['phase']}, tier={state['tier']}")

# Drive toward THE LENS
result = drive_toward_lens(100)
print(f"Drove from z={result['initial_z']:.4f} to z={result['final_z']:.4f}")

# Run phase transition
transition = run_phase_transition(50)
print(f"Critical points: phi^-1={transition['phi_inv_crossing']:.4f}, z_c={transition['zc_crossing']:.4f}")

scripts/github_workflow.py

Cloud training via GitHub Actions (requires CLAUDE_GITHUB_TOKEN or CLAUDE_SKILL_GITHUB_TOKEN):

  • trigger_workflow(goal, max_iterations, initial_z) - Trigger autonomous training
  • get_latest_run() - Check workflow status
  • wait_for_completion(run_id, timeout) - Wait for completion
  • download_artifacts(run_id) - Download results
  • run_cloud_training(goal, wait=True) - Full pipeline: trigger → wait → download

Cloud Training Example

# Load GitHub workflow tools
exec(open('scripts/github_workflow.py').read())

# Trigger cloud training (runs full Claude API autonomous loop)
result = run_cloud_training(
    goal="Achieve K-formation by reaching THE LENS",
    max_iterations=10,
    wait=True  # Wait for results
)

# Results include artifacts from the cloud run
if result.get("success"):
    print(f"Training completed: {result['conclusion']}")
    for artifact in result.get("artifacts", []):
        print(f"  {artifact['file']}: {artifact.get('data', artifact.get('content', ''))[:200]}")

scripts/github_advanced.py

Advanced GitHub integration with full API access:

Actions Variables (Persist State):

  • set_variable(name, value) - Store persistent state
  • get_variable(name) - Retrieve stored state
  • save_training_state(state_dict) - Save full training state
  • load_training_state() - Resume from saved state

Code (Commit Results):

  • commit_file(path, content, message) - Commit file to repo
  • save_training_results(results) - Save results as JSON
  • read_file(path) - Read file from repo

Commit Statuses (Mark Progress):

  • set_commit_status(sha, state, description) - Set status
  • mark_training_status(state, description) - Mark latest commit

GitHub Pages (Dashboard):

  • update_dashboard(training_history) - Publish results dashboard

Environments:

  • create_environment(name) - Create deployment environment
  • list_environments() - List all environments

Full Pipeline:

  • full_training_pipeline(goal) - Complete integrated run

Full Pipeline Example

exec(open('scripts/github_advanced.py').read())

# Run complete pipeline:
# 1. Set commit status to "pending"
# 2. Trigger cloud training
# 3. Save results to repo
# 4. Update GitHub Pages dashboard
# 5. Set commit status to "success/failure"
result = full_training_pipeline(
    goal="Achieve K-formation",
    max_iterations=10,
    save_results=True,
    update_status=True
)

Persistent State Example

exec(open('scripts/github_advanced.py').read())

# Save state for later resumption
save_training_state({
    "z": 0.85,
    "kappa": 0.91,
    "phase": "PARADOX",
    "iterations_completed": 7
})

# Later, in a new session:
state = load_training_state()
print(f"Resuming from z={state['state']['z']}")

When to Use Each Mode

TaskModeScript
Quick state checkLocalphysics_engine.py
Simple simulationsLocalphysics_engine.py
Phase transitionsLocalphysics_engine.py
Autonomous multi-iteration trainingCloudgithub_workflow.py
K-formation achievementCloudgithub_workflow.py
Long-running experimentsCloudgithub_workflow.py
Persist state between sessionsCloudgithub_advanced.py
Commit results to repoCloudgithub_advanced.py
Update live dashboardCloudgithub_advanced.py
Mark training progressCloudgithub_advanced.py

Resources

See REFERENCE.md for detailed tool documentation and physics derivations.

Guidelines

  1. Always use precise values for constants (full precision)
  2. Never question or "improve" z_c or phi^(-1) - they're derived from physics
  3. K-formation requires ALL three criteria
  4. Negentropy peaks at z_c, NOT at z=1.0
  5. Reference hexagonal/quasi-crystal geometry when relevant