Marketplace

optimizing-performance

Analyzes and optimizes application performance across frontend, backend, and database layers. Use when diagnosing slowness, improving load times, optimizing queries, reducing bundle size, or when asked about performance issues.

$ Instalar

git clone https://github.com/CloudAI-X/claude-workflow-v2 /tmp/claude-workflow-v2 && cp -r /tmp/claude-workflow-v2/skills/optimizing-performance ~/.claude/skills/claude-workflow-v2

// tip: Run this command in your terminal to install the skill


name: optimizing-performance description: Analyzes and optimizes application performance across frontend, backend, and database layers. Use when diagnosing slowness, improving load times, optimizing queries, reducing bundle size, or when asked about performance issues.

Optimizing Performance

Performance Optimization Workflow

Copy this checklist and track progress:

Performance Optimization Progress:
- [ ] Step 1: Measure baseline performance
- [ ] Step 2: Identify bottlenecks
- [ ] Step 3: Apply targeted optimizations
- [ ] Step 4: Measure again and compare
- [ ] Step 5: Repeat if targets not met

Critical Rule: Never optimize without data. Always profile before and after changes.

Step 1: Measure Baseline

Profiling Commands

# Node.js profiling
node --prof app.js
node --prof-process isolate*.log > profile.txt

# Python profiling
python -m cProfile -o profile.stats app.py
python -m pstats profile.stats

# Web performance
lighthouse https://example.com --output=json

Step 2: Identify Bottlenecks

Common Bottleneck Categories

CategorySymptomsTools
CPUHigh CPU usage, slow computationProfiler, flame graphs
MemoryHigh RAM, GC pauses, OOMHeap snapshots, memory profiler
I/OSlow disk/network, waitingstrace, network inspector
DatabaseSlow queries, lock contentionQuery analyzer, EXPLAIN

Step 3: Apply Optimizations

Frontend Optimizations

Bundle Size:

// ❌ Import entire library
import _ from 'lodash';

// ✅ Import only needed functions
import debounce from 'lodash/debounce';

// ✅ Use dynamic imports for code splitting
const HeavyComponent = lazy(() => import('./HeavyComponent'));

Rendering:

// ❌ Render on every parent update
function Child({ data }) {
  return <ExpensiveComponent data={data} />;
}

// ✅ Memoize when props don't change
const Child = memo(function Child({ data }) {
  return <ExpensiveComponent data={data} />;
});

// ✅ Use useMemo for expensive computations
const processed = useMemo(() => expensiveCalc(data), [data]);

Images:

<!-- ❌ Unoptimized -->
<img src="large-image.jpg" />

<!-- ✅ Optimized -->
<img
  src="image.webp"
  srcset="image-300.webp 300w, image-600.webp 600w"
  sizes="(max-width: 600px) 300px, 600px"
  loading="lazy"
  decoding="async"
/>

Backend Optimizations

Database Queries:

-- ❌ N+1 Query Problem
SELECT * FROM users;
-- Then for each user:
SELECT * FROM orders WHERE user_id = ?;

-- ✅ Single query with JOIN
SELECT u.*, o.*
FROM users u
LEFT JOIN orders o ON u.id = o.user_id;

-- ✅ Or use pagination
SELECT * FROM users LIMIT 100 OFFSET 0;

Caching Strategy:

// Multi-layer caching
const getUser = async (id) => {
  // L1: In-memory cache (fastest)
  let user = memoryCache.get(`user:${id}`);
  if (user) return user;

  // L2: Redis cache (fast)
  user = await redis.get(`user:${id}`);
  if (user) {
    memoryCache.set(`user:${id}`, user, 60);
    return JSON.parse(user);
  }

  // L3: Database (slow)
  user = await db.users.findById(id);
  await redis.setex(`user:${id}`, 3600, JSON.stringify(user));
  memoryCache.set(`user:${id}`, user, 60);

  return user;
};

Async Processing:

// ❌ Blocking operation
app.post('/upload', async (req, res) => {
  await processVideo(req.file);  // Takes 5 minutes
  res.send('Done');
});

// ✅ Queue for background processing
app.post('/upload', async (req, res) => {
  const jobId = await queue.add('processVideo', { file: req.file });
  res.send({ jobId, status: 'processing' });
});

Algorithm Optimizations

// ❌ O(n²) - nested loops
function findDuplicates(arr) {
  const duplicates = [];
  for (let i = 0; i < arr.length; i++) {
    for (let j = i + 1; j < arr.length; j++) {
      if (arr[i] === arr[j]) duplicates.push(arr[i]);
    }
  }
  return duplicates;
}

// ✅ O(n) - hash map
function findDuplicates(arr) {
  const seen = new Set();
  const duplicates = new Set();
  for (const item of arr) {
    if (seen.has(item)) duplicates.add(item);
    seen.add(item);
  }
  return [...duplicates];
}

Step 4: Measure Again

After applying optimizations, re-run profiling and compare:

Comparison Checklist:
- [ ] Run same profiling tools as baseline
- [ ] Compare metrics before vs after
- [ ] Verify no regressions in other areas
- [ ] Document improvement percentages

Performance Targets

Web Vitals

MetricGoodNeeds WorkPoor
LCP< 2.5s2.5-4s> 4s
FID< 100ms100-300ms> 300ms
CLS< 0.10.1-0.25> 0.25
TTFB< 800ms800ms-1.8s> 1.8s

API Performance

MetricTarget
P50 Latency< 100ms
P95 Latency< 500ms
P99 Latency< 1s
Error Rate< 0.1%

Validation

After optimization, validate results:

Performance Validation:
- [ ] Metrics improved from baseline
- [ ] No functionality regressions
- [ ] No new errors introduced
- [ ] Changes are sustainable (not one-time fixes)
- [ ] Performance gains documented

If targets not met, return to Step 2 and identify remaining bottlenecks.