fleet-agent
Context-aware development assistant for AgenticFleet with auto-learning and dual memory (NeonDB + ChromaDB). Handles development workflows with intelligent context management.
$ Instalar
git clone https://github.com/Qredence/agentic-fleet /tmp/agentic-fleet && cp -r /tmp/agentic-fleet/.fleet/context/system/fleet-agent ~/.claude/skills/agentic-fleet// tip: Run this command in your terminal to install the skill
name: fleet-agent description: Context-aware development assistant for AgenticFleet with auto-learning and dual memory (NeonDB + ChromaDB). Handles development workflows with intelligent context management. focus: development, context-management, pattern-learning, code-analysis triggers:
- "add an agent"
- "create a workflow"
- "DSPy signature"
- "test code"
- "memory operations"
- "code analysis"
- "pattern extraction" capabilities:
- Context-aware block loading (keyword-based)
- Dual database search (NeonDB structured + ChromaDB semantic)
- Pattern extraction with detailed code examples
- Basic code analysis (DSPy signatures, agents, workflows, tools)
- Session tracking in NeonDB
- Auto-learning enabled
Fleet Agent
A context-aware development assistant for AgenticFleet that maintains persistent memory across sessions using a hybrid NeonDB + ChromaDB architecture.
Memory Architecture
Dual Storage
- ChromaDB (Semantic): Skills, patterns, code snippets with embedding-based search
- NeonDB (Structured): Sessions, users, analytics, skill metadata with SQL queries
Context Layers
-
Core Memory (
.fleet/context/core/): Always loadedproject.md: Architecture, conventions, tech stackhuman.md: User preferences, communication stylepersona.md: Agent guidelines, tone
-
Topic Blocks (
.fleet/context/blocks/): Loaded on demandproject/: commands, conventions, gotchas, architectureworkflows/: git, reviewdecisions/: ADRs
-
Skills (ChromaDB + NeonDB): Semantic + structured patterns
Usage Examples
Learn a Pattern
/fleet-agent learn --name "add_dspy_agent" --category "agent" --content "Create agent via AgentFactory with DSPyEnhancedAgent wrapper..."
Recall Information
/fleet-agent recall "DSPy typed signatures"
/fleet-agent context "add a new agent for web search"
Analyze Code
/fleet-agent analyze src/agents/coordinator.py
Session Management
/fleet-agent session start
/fleet-agent session status
/fleet-agent session summary "Completed agent creation workflow"
Commands
| Command | Description |
|---|---|
learn --name <name> --category <cat> --content <code> | Save pattern to both databases |
recall <query> | Search NeonDB + ChromaDB |
context <task> | Load relevant context blocks |
analyze <file> | Analyze code structure |
session start | Start new session |
session status | Show current session |
session summary <text> | Save session summary |
stats | Show development metrics |
Auto-Learning
Automatically extracts and saves patterns after successful task completion with detailed code examples:
name: pattern_add_dspy_signature
category: dspy
description: How to create a DSPy signature with TypedPredictor
implementation: |
class TaskAnalysisOutput(BaseModel):
complexity: Literal["low", "medium", "high"]
class TaskAnalysis(dspy.Signature):
task: str = dspy.InputField(desc="Task to analyze")
analysis: TaskAnalysisOutput = dspy.OutputField()
Implementation
Main script: .fleet/context/scripts/fleet_agent.py
Invocation: uv run python .fleet/context/scripts/fleet_agent.py <command>
Dependencies: neon_memory.py, chroma_driver.py, memory_loader.py
See Also
memory-system-guide.md: Complete memory system documentation.fleet/context/MEMORY.md: Memory hierarchy and commands
Repository
