Regression Modeling

Build predictive models using linear regression, polynomial regression, and regularized regression for continuous prediction, trend forecasting, and relationship quantification

$ Instalar

git clone https://github.com/aj-geddes/useful-ai-prompts /tmp/useful-ai-prompts && cp -r /tmp/useful-ai-prompts/skills/regression-modeling ~/.claude/skills/useful-ai-prompts

// tip: Run this command in your terminal to install the skill


name: Regression Modeling description: Build predictive models using linear regression, polynomial regression, and regularized regression for continuous prediction, trend forecasting, and relationship quantification

Regression Modeling

Overview

Regression modeling predicts continuous target values based on input features, establishing quantitative relationships between variables for forecasting and analysis.

When to Use

  • Predicting sales, prices, or other continuous numerical outcomes
  • Understanding relationships between independent and dependent variables
  • Forecasting trends based on historical data
  • Quantifying the impact of features on a target variable
  • Building baseline models for comparison with more complex algorithms
  • Identifying which variables most influence predictions

Regression Types

  • Linear Regression: Straight-line fit to data
  • Polynomial Regression: Non-linear relationships
  • Ridge (L2): Regularization to prevent overfitting
  • Lasso (L1): Feature selection through regularization
  • ElasticNet: Combines Ridge and Lasso
  • Robust Regression: Resistant to outliers

Key Metrics

  • R² Score: Proportion of variance explained
  • RMSE: Root Mean Squared Error
  • MAE: Mean Absolute Error
  • AIC/BIC: Model comparison criteria

Implementation with Python

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import (
    LinearRegression, Ridge, Lasso, ElasticNet, HuberRegressor
)
from sklearn.preprocessing import PolynomialFeatures, StandardScaler
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error
import seaborn as sns

# Generate sample data
np.random.seed(42)
X = np.random.uniform(0, 100, 200).reshape(-1, 1)
y = 2.5 * X.squeeze() + 30 + np.random.normal(0, 50, 200)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

# Linear Regression
lr_model = LinearRegression()
lr_model.fit(X_train, y_train)
y_pred_lr = lr_model.predict(X_test)

print("Linear Regression:")
print(f"  R² Score: {r2_score(y_test, y_pred_lr):.4f}")
print(f"  RMSE: {np.sqrt(mean_squared_error(y_test, y_pred_lr)):.4f}")
print(f"  Coefficient: {lr_model.coef_[0]:.4f}")
print(f"  Intercept: {lr_model.intercept_:.4f}")

# Polynomial Regression (degree 2)
poly = PolynomialFeatures(degree=2)
X_train_poly = poly.fit_transform(X_train)
X_test_poly = poly.transform(X_test)

poly_model = LinearRegression()
poly_model.fit(X_train_poly, y_train)
y_pred_poly = poly_model.predict(X_test_poly)

print("\nPolynomial Regression (degree=2):")
print(f"  R² Score: {r2_score(y_test, y_pred_poly):.4f}")
print(f"  RMSE: {np.sqrt(mean_squared_error(y_test, y_pred_poly)):.4f}")

# Ridge Regression (L2 regularization)
ridge_model = Ridge(alpha=1.0)
ridge_model.fit(X_train, y_train)
y_pred_ridge = ridge_model.predict(X_test)

print("\nRidge Regression (alpha=1.0):")
print(f"  R² Score: {r2_score(y_test, y_pred_ridge):.4f}")
print(f"  RMSE: {np.sqrt(mean_squared_error(y_test, y_pred_ridge)):.4f}")

# Lasso Regression (L1 regularization)
lasso_model = Lasso(alpha=0.1)
lasso_model.fit(X_train, y_train)
y_pred_lasso = lasso_model.predict(X_test)

print("\nLasso Regression (alpha=0.1):")
print(f"  R² Score: {r2_score(y_test, y_pred_lasso):.4f}")
print(f"  RMSE: {np.sqrt(mean_squared_error(y_test, y_pred_lasso)):.4f}")

# ElasticNet Regression
elastic_model = ElasticNet(alpha=0.1, l1_ratio=0.5)
elastic_model.fit(X_train, y_train)
y_pred_elastic = elastic_model.predict(X_test)

print("\nElasticNet Regression:")
print(f"  R² Score: {r2_score(y_test, y_pred_elastic):.4f}")
print(f"  RMSE: {np.sqrt(mean_squared_error(y_test, y_pred_elastic)):.4f}")

# Robust Regression (resistant to outliers)
huber_model = HuberRegressor(max_iter=1000, alpha=0.1)
huber_model.fit(X_train, y_train)
y_pred_huber = huber_model.predict(X_test)

print("\nHuber Regression (Robust):")
print(f"  R² Score: {r2_score(y_test, y_pred_huber):.4f}")
print(f"  RMSE: {np.sqrt(mean_squared_error(y_test, y_pred_huber)):.4f}")

# Visualization
fig, axes = plt.subplots(2, 3, figsize=(15, 8))

models_data = [
    (X_test, y_test, y_pred_lr, 'Linear'),
    (X_test_poly, y_test, y_pred_poly, 'Polynomial (deg=2)'),
    (X_test, y_test, y_pred_ridge, 'Ridge'),
    (X_test, y_test, y_pred_lasso, 'Lasso'),
    (X_test, y_test, y_pred_elastic, 'ElasticNet'),
    (X_test, y_test, y_pred_huber, 'Huber'),
]

for idx, (X_p, y_t, y_p, label) in enumerate(models_data):
    if label in ['Polynomial (deg=2)']:
        x_plot = X_p[:, 1]  # Use quadratic feature for plotting
    else:
        x_plot = X_p

    ax = axes[idx // 3, idx % 3]
    ax.scatter(x_plot, y_t, alpha=0.5, label='Actual')
    ax.scatter(x_plot, y_p, alpha=0.5, color='red', label='Predicted')
    ax.set_title(f'{label}\nR²={r2_score(y_t, y_p):.4f}')
    ax.legend()
    ax.grid(True, alpha=0.3)

plt.tight_layout()
plt.show()

# Residual analysis
fig, axes = plt.subplots(1, 2, figsize=(12, 4))

residuals = y_test - y_pred_lr
axes[0].scatter(y_pred_lr, residuals, alpha=0.5)
axes[0].axhline(y=0, color='r', linestyle='--')
axes[0].set_title('Residual Plot')
axes[0].set_xlabel('Fitted Values')
axes[0].set_ylabel('Residuals')

axes[1].hist(residuals, bins=20, edgecolor='black')
axes[1].set_title('Residuals Distribution')
axes[1].set_xlabel('Residuals')
axes[1].set_ylabel('Frequency')

plt.tight_layout()
plt.show()

# Cross-validation
cv_scores = cross_val_score(LinearRegression(), X, y, cv=5, scoring='r2')
print(f"\nCross-validation R² scores: {cv_scores}")
print(f"Mean CV R²: {cv_scores.mean():.4f} (+/- {cv_scores.std():.4f})")

# Regularization parameter tuning
alphas = np.logspace(-3, 3, 100)
ridge_scores = []

for alpha in alphas:
    ridge = Ridge(alpha=alpha)
    scores = cross_val_score(ridge, X_train, y_train, cv=5, scoring='r2')
    ridge_scores.append(scores.mean())

best_alpha_idx = np.argmax(ridge_scores)
best_alpha = alphas[best_alpha_idx]

plt.figure(figsize=(10, 5))
plt.semilogx(alphas, ridge_scores)
plt.axvline(x=best_alpha, color='red', linestyle='--', label=f'Best alpha={best_alpha:.4f}')
plt.xlabel('Alpha (Regularization Strength)')
plt.ylabel('Cross-validation R² Score')
plt.title('Ridge Regression: Alpha Tuning')
plt.legend()
plt.grid(True, alpha=0.3)
plt.show()

# Feature importance (coefficients)
if hasattr(lr_model, 'coef_'):
    print(f"\nModel Coefficients: {lr_model.coef_}")

# Additional evaluation and diagnostics

# Model prediction intervals
from scipy import stats as sp_stats

predictions = lr_model.predict(X_test)
residuals = y_test - predictions
mse = np.mean(residuals**2)
rmse = np.sqrt(mse)

# Prediction intervals (95%)
n = len(X_test)
p = X_test.shape[1]
dof = n - p - 1
t_val = sp_stats.t.ppf(0.975, dof)
margin = t_val * np.sqrt(mse * (1 + 1/n))
pred_intervals = np.column_stack([
    predictions - margin,
    predictions + margin
])

print(f"\nPrediction Intervals (95%):")
print(f"First prediction: {predictions[0]:.2f} [{pred_intervals[0, 0]:.2f}, {pred_intervals[0, 1]:.2f}]")

# Variance inflation factors for multicollinearity
from statsmodels.stats.outliers_influence import variance_inflation_factor

vif_data = pd.DataFrame()
vif_data["Feature"] = X_test.columns if hasattr(X_test, 'columns') else range(X_test.shape[1])
try:
    vif_data["VIF"] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
    print("\nVariance Inflation Factor (VIF):")
    print(vif_data)
except:
    print("VIF calculation skipped (insufficient features)")

# Prediction by group/segment
if hasattr(X_test, 'columns'):
    segment_results = {}
    for feat in X_test.columns[:2]:
        q1, q3 = X_test[feat].quantile([0.25, 0.75])
        low = X_test[X_test[feat] <= q1]
        high = X_test[X_test[feat] >= q3]

        if len(low) > 0 and len(high) > 0:
            low_pred_rmse = np.sqrt(np.mean((y_test[low.index] - lr_model.predict(low))**2))
            high_pred_rmse = np.sqrt(np.mean((y_test[high.index] - lr_model.predict(high))**2))
            segment_results[feat] = {
                'Low RMSE': low_pred_rmse,
                'High RMSE': high_pred_rmse,
            }

    if segment_results:
        print(f"\nSegment Performance:")
        for feat, results in segment_results.items():
            print(f"  {feat}: Low={results['Low RMSE']:.2f}, High={results['High RMSE']:.2f}")

print("\nRegression model evaluation complete!")

Assumption Checking

  • Linearity: Relationship is linear
  • Independence: Observations are independent
  • Homoscedasticity: Constant variance of errors
  • Normality: Errors are normally distributed
  • No multicollinearity: Features not highly correlated

Model Selection

  • Simple data: Linear regression
  • Non-linear patterns: Polynomial regression
  • Many features: Lasso or ElasticNet
  • Outliers: Robust regression
  • Prevent overfitting: Ridge or ElasticNet

Deliverables

  • Fitted models with coefficients
  • R² and RMSE metrics
  • Residual plots and analysis
  • Cross-validation results
  • Regularization parameter tuning curves
  • Model comparison summary
  • Predictions with confidence intervals