promptfoo-evaluation
Configures and runs LLM evaluation using Promptfoo framework. Use when setting up prompt testing, creating evaluation configs (promptfooconfig.yaml), writing Python custom assertions, implementing llm-rubric for LLM-as-judge, or managing few-shot examples in prompts. Triggers on keywords like "promptfoo", "eval", "LLM evaluation", "prompt testing", or "model comparison".
$ Instalar
git clone https://github.com/daymade/claude-code-skills /tmp/claude-code-skills && cp -r /tmp/claude-code-skills/promptfoo-evaluation ~/.claude/skills/claude-code-skills// tip: Run this command in your terminal to install the skill
name: promptfoo-evaluation description: Configures and runs LLM evaluation using Promptfoo framework. Use when setting up prompt testing, creating evaluation configs (promptfooconfig.yaml), writing Python custom assertions, implementing llm-rubric for LLM-as-judge, or managing few-shot examples in prompts. Triggers on keywords like "promptfoo", "eval", "LLM evaluation", "prompt testing", or "model comparison".
Promptfoo Evaluation
Overview
This skill provides guidance for configuring and running LLM evaluations using Promptfoo, an open-source CLI tool for testing and comparing LLM outputs.
Quick Start
# Initialize a new evaluation project
npx promptfoo@latest init
# Run evaluation
npx promptfoo@latest eval
# View results in browser
npx promptfoo@latest view
Configuration Structure
A typical Promptfoo project structure:
project/
├── promptfooconfig.yaml # Main configuration
├── prompts/
│ ├── system.md # System prompt
│ └── chat.json # Chat format prompt
├── tests/
│ └── cases.yaml # Test cases
└── scripts/
└── metrics.py # Custom Python assertions
Core Configuration (promptfooconfig.yaml)
# yaml-language-server: $schema=https://promptfoo.dev/config-schema.json
description: "My LLM Evaluation"
# Prompts to test
prompts:
- file://prompts/system.md
- file://prompts/chat.json
# Models to compare
providers:
- id: anthropic:messages:claude-sonnet-4-5-20250929
label: Claude-4.5-Sonnet
- id: openai:gpt-4.1
label: GPT-4.1
# Test cases
tests: file://tests/cases.yaml
# Default assertions for all tests
defaultTest:
assert:
- type: python
value: file://scripts/metrics.py:custom_assert
- type: llm-rubric
value: |
Evaluate the response quality on a 0-1 scale.
threshold: 0.7
# Output path
outputPath: results/eval-results.json
Prompt Formats
Text Prompt (system.md)
You are a helpful assistant.
Task: {{task}}
Context: {{context}}
Chat Format (chat.json)
[
{"role": "system", "content": "{{system_prompt}}"},
{"role": "user", "content": "{{user_input}}"}
]
Few-Shot Pattern
Embed examples directly in prompt or use chat format with assistant messages:
[
{"role": "system", "content": "{{system_prompt}}"},
{"role": "user", "content": "Example input: {{example_input}}"},
{"role": "assistant", "content": "{{example_output}}"},
{"role": "user", "content": "Now process: {{actual_input}}"}
]
Test Cases (tests/cases.yaml)
- description: "Test case 1"
vars:
system_prompt: file://prompts/system.md
user_input: "Hello world"
# Load content from files
context: file://data/context.txt
assert:
- type: contains
value: "expected text"
- type: python
value: file://scripts/metrics.py:custom_check
threshold: 0.8
Python Custom Assertions
Create a Python file for custom assertions (e.g., scripts/metrics.py):
def get_assert(output: str, context: dict) -> dict:
"""Default assertion function."""
vars_dict = context.get('vars', {})
# Access test variables
expected = vars_dict.get('expected', '')
# Return result
return {
"pass": expected in output,
"score": 0.8,
"reason": "Contains expected content",
"named_scores": {"relevance": 0.9}
}
def custom_check(output: str, context: dict) -> dict:
"""Custom named assertion."""
word_count = len(output.split())
passed = 100 <= word_count <= 500
return {
"pass": passed,
"score": min(1.0, word_count / 300),
"reason": f"Word count: {word_count}"
}
Key points:
- Default function name is
get_assert - Specify function with
file://path.py:function_name - Return
bool,float(score), ordictwith pass/score/reason - Access variables via
context['vars']
LLM-as-Judge (llm-rubric)
assert:
- type: llm-rubric
value: |
Evaluate the response based on:
1. Accuracy of information
2. Clarity of explanation
3. Completeness
Score 0.0-1.0 where 0.7+ is passing.
threshold: 0.7
provider: openai:gpt-4.1 # Optional: override grader model
Best practices:
- Provide clear scoring criteria
- Use
thresholdto set minimum passing score - Default grader uses available API keys (OpenAI → Anthropic → Google)
Common Assertion Types
| Type | Usage | Example |
|---|---|---|
contains | Check substring | value: "hello" |
icontains | Case-insensitive | value: "HELLO" |
equals | Exact match | value: "42" |
regex | Pattern match | value: "\\d{4}" |
python | Custom logic | value: file://script.py |
llm-rubric | LLM grading | value: "Is professional" |
latency | Response time | threshold: 1000 |
File References
All paths are relative to config file location:
# Load file content as variable
vars:
content: file://data/input.txt
# Load prompt from file
prompts:
- file://prompts/main.md
# Load test cases from file
tests: file://tests/cases.yaml
# Load Python assertion
assert:
- type: python
value: file://scripts/check.py:validate
Running Evaluations
# Basic run
npx promptfoo@latest eval
# With specific config
npx promptfoo@latest eval --config path/to/config.yaml
# Output to file
npx promptfoo@latest eval --output results.json
# Filter tests
npx promptfoo@latest eval --filter-metadata category=math
# View results
npx promptfoo@latest view
Troubleshooting
Python not found:
export PROMPTFOO_PYTHON=python3
Large outputs truncated:
Outputs over 30000 characters are truncated. Use head_limit in assertions.
File not found errors:
Ensure paths are relative to promptfooconfig.yaml location.
Echo Provider (Preview Mode)
Use the echo provider to preview rendered prompts without making API calls:
# promptfooconfig-preview.yaml
providers:
- echo # Returns prompt as output, no API calls
tests:
- vars:
input: "test content"
Use cases:
- Preview prompt rendering before expensive API calls
- Verify Few-shot examples are loaded correctly
- Debug variable substitution issues
- Validate prompt structure
# Run preview mode
npx promptfoo@latest eval --config promptfooconfig-preview.yaml
Cost: Free - no API tokens consumed.
Advanced Few-Shot Implementation
Multi-turn Conversation Pattern
For complex few-shot learning with full examples:
[
{"role": "system", "content": "{{system_prompt}}"},
// Few-shot Example 1
{"role": "user", "content": "Task: {{example_input_1}}"},
{"role": "assistant", "content": "{{example_output_1}}"},
// Few-shot Example 2 (optional)
{"role": "user", "content": "Task: {{example_input_2}}"},
{"role": "assistant", "content": "{{example_output_2}}"},
// Actual test
{"role": "user", "content": "Task: {{actual_input}}"}
]
Test case configuration:
tests:
- vars:
system_prompt: file://prompts/system.md
# Few-shot examples
example_input_1: file://data/examples/input1.txt
example_output_1: file://data/examples/output1.txt
example_input_2: file://data/examples/input2.txt
example_output_2: file://data/examples/output2.txt
# Actual test
actual_input: file://data/test1.txt
Best practices:
- Use 1-3 few-shot examples (more may dilute effectiveness)
- Ensure examples match the task format exactly
- Load examples from files for better maintainability
- Use echo provider first to verify structure
Long Text Handling
For Chinese/long-form content evaluations (10k+ characters):
Configuration:
providers:
- id: anthropic:messages:claude-sonnet-4-5-20250929
config:
max_tokens: 8192 # Increase for long outputs
defaultTest:
assert:
- type: python
value: file://scripts/metrics.py:check_length
Python assertion for text metrics:
import re
def strip_tags(text: str) -> str:
"""Remove HTML tags for pure text."""
return re.sub(r'<[^>]+>', '', text)
def check_length(output: str, context: dict) -> dict:
"""Check output length constraints."""
raw_input = context['vars'].get('raw_input', '')
input_len = len(strip_tags(raw_input))
output_len = len(strip_tags(output))
reduction_ratio = 1 - (output_len / input_len) if input_len > 0 else 0
return {
"pass": 0.7 <= reduction_ratio <= 0.9,
"score": reduction_ratio,
"reason": f"Reduction: {reduction_ratio:.1%} (target: 70-90%)",
"named_scores": {
"input_length": input_len,
"output_length": output_len,
"reduction_ratio": reduction_ratio
}
}
Real-World Example
Project: Chinese short-video content curation from long transcripts
Structure:
tiaogaoren/
├── promptfooconfig.yaml # Production config
├── promptfooconfig-preview.yaml # Preview config (echo provider)
├── prompts/
│ ├── tiaogaoren-prompt.json # Chat format with few-shot
│ └── v4/system-v4.md # System prompt
├── tests/cases.yaml # 3 test samples
├── scripts/metrics.py # Custom metrics (reduction ratio, etc.)
├── data/ # 5 samples (2 few-shot, 3 eval)
└── results/
See: /Users/tiansheng/Workspace/prompts/tiaogaoren/ for full implementation.
Resources
For detailed API reference and advanced patterns, see references/promptfoo_api.md.
Repository
