Marketplace
pytorch
Building and training neural networks with PyTorch. Use when implementing deep learning models, training loops, data pipelines, model optimization with torch.compile, distributed training, or deploying PyTorch models.
$ Instalar
git clone https://github.com/itsmostafa/llm-engineering-skills /tmp/llm-engineering-skills && cp -r /tmp/llm-engineering-skills/skills/pytorch ~/.claude/skills/llm-engineering-skills// tip: Run this command in your terminal to install the skill
SKILL.md
name: pytorch description: Building and training neural networks with PyTorch. Use when implementing deep learning models, training loops, data pipelines, model optimization with torch.compile, distributed training, or deploying PyTorch models.
Using PyTorch
PyTorch is a deep learning framework with dynamic computation graphs, strong GPU acceleration, and Pythonic design. This skill covers practical patterns for building production-quality neural networks.
Table of Contents
- Core Concepts
- Model Architecture
- Training Loop
- Data Loading
- Performance Optimization
- Distributed Training
- Saving and Loading
Core Concepts
Tensors
import torch
# Create tensors
x = torch.tensor([[1, 2], [3, 4]], dtype=torch.float32)
x = torch.zeros(3, 4)
x = torch.randn(3, 4) # Normal distribution
# Device management
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
x = x.to(device)
# Operations (all return new tensors)
y = x + 1
y = x @ x.T # Matrix multiplication
y = x.view(2, 6) # Reshape
Autograd
# Enable gradient tracking
x = torch.randn(3, requires_grad=True)
y = x ** 2
loss = y.sum()
# Compute gradients
loss.backward()
print(x.grad) # dy/dx
# Disable gradients for inference
with torch.no_grad():
pred = model(x)
# Or use inference mode (more efficient)
with torch.inference_mode():
pred = model(x)
Model Architecture
nn.Module Pattern
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self, input_dim: int, hidden_dim: int, output_dim: int):
super().__init__()
self.fc1 = nn.Linear(input_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, output_dim)
self.dropout = nn.Dropout(0.1)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = F.relu(self.fc1(x))
x = self.dropout(x)
return self.fc2(x)
Common Layers
# Convolution
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)
# Normalization
nn.BatchNorm2d(num_features)
nn.LayerNorm(normalized_shape)
# Attention
nn.MultiheadAttention(embed_dim, num_heads)
# Recurrent
nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
nn.GRU(input_size, hidden_size, num_layers, batch_first=True)
Weight Initialization
def init_weights(module):
if isinstance(module, nn.Linear):
nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
nn.init.normal_(module.weight, std=0.02)
model.apply(init_weights)
Training Loop
Standard Pattern
model = Model(input_dim, hidden_dim, output_dim).to(device)
optimizer = torch.optim.AdamW(model.parameters(), lr=1e-3, weight_decay=0.01)
criterion = nn.CrossEntropyLoss()
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=num_epochs)
for epoch in range(num_epochs):
model.train()
for batch in train_loader:
inputs, targets = batch
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
# Optional: gradient clipping
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
optimizer.step()
scheduler.step()
# Validation
model.eval()
with torch.no_grad():
for batch in val_loader:
# ... validation logic
Mixed Precision Training
from torch.cuda.amp import autocast, GradScaler
scaler = GradScaler()
for batch in train_loader:
inputs, targets = batch
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
with autocast():
outputs = model(inputs)
loss = criterion(outputs, targets)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
Gradient Accumulation
# Requires setup from Mixed Precision Training above:
# scaler = GradScaler(), model, criterion, optimizer, device
accumulation_steps = 4
for i, batch in enumerate(train_loader):
inputs, targets = batch
inputs, targets = inputs.to(device), targets.to(device)
with autocast():
outputs = model(inputs)
loss = criterion(outputs, targets) / accumulation_steps
scaler.scale(loss).backward()
if (i + 1) % accumulation_steps == 0:
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
Data Loading
Dataset and DataLoader
from torch.utils.data import Dataset, DataLoader
class CustomDataset(Dataset):
def __init__(self, data, labels, transform=None):
self.data = data
self.labels = labels
self.transform = transform
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
x = self.data[idx]
if self.transform:
x = self.transform(x)
return x, self.labels[idx]
train_loader = DataLoader(
dataset,
batch_size=32,
shuffle=True,
num_workers=4,
pin_memory=True, # Faster GPU transfer
drop_last=True, # Consistent batch sizes
)
Collate Functions
def collate_fn(batch):
"""Custom batching for variable-length sequences."""
inputs, targets = zip(*batch)
inputs = nn.utils.rnn.pad_sequence(inputs, batch_first=True)
targets = torch.stack(targets)
return inputs, targets
loader = DataLoader(dataset, collate_fn=collate_fn)
Performance Optimization
torch.compile (PyTorch 2.0+)
# Basic compilation
model = torch.compile(model)
# With options
model = torch.compile(
model,
mode="reduce-overhead", # Options: default, reduce-overhead, max-autotune
fullgraph=True, # Enforce no graph breaks
)
# Compile specific functions
@torch.compile
def train_step(model, inputs, targets):
outputs = model(inputs)
return criterion(outputs, targets)
Compilation modes:
default: Good balance of compile time and speedupreduce-overhead: Minimizes framework overhead, good for small modelsmax-autotune: Maximum performance, longer compile time
Memory Optimization
# Activation checkpointing (trade compute for memory)
from torch.utils.checkpoint import checkpoint
class Model(nn.Module):
def forward(self, x):
# Recompute activations during backward
x = checkpoint(self.expensive_layer, x, use_reentrant=False)
return self.output_layer(x)
# Clear cache
torch.cuda.empty_cache()
# Monitor memory
print(torch.cuda.memory_allocated() / 1e9, "GB")
print(torch.cuda.max_memory_allocated() / 1e9, "GB")
Distributed Training
DistributedDataParallel (DDP)
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data.distributed import DistributedSampler
def setup(rank, world_size):
dist.init_process_group("nccl", rank=rank, world_size=world_size)
torch.cuda.set_device(rank)
def cleanup():
dist.destroy_process_group()
def train(rank, world_size):
setup(rank, world_size)
model = Model().to(rank)
model = DDP(model, device_ids=[rank])
sampler = DistributedSampler(dataset, num_replicas=world_size, rank=rank)
loader = DataLoader(dataset, sampler=sampler)
for epoch in range(num_epochs):
sampler.set_epoch(epoch) # Important for shuffling
# ... training loop
cleanup()
# Launch with: torchrun --nproc_per_node=4 train.py
FullyShardedDataParallel (FSDP)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp import MixedPrecision
mp_policy = MixedPrecision(
param_dtype=torch.bfloat16,
reduce_dtype=torch.bfloat16,
buffer_dtype=torch.bfloat16,
)
model = FSDP(
model,
mixed_precision=mp_policy,
use_orig_params=True, # Required for torch.compile compatibility
)
Saving and Loading
Checkpoints
# Save
torch.save({
"epoch": epoch,
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
"loss": loss,
}, "checkpoint.pt")
# Load
checkpoint = torch.load("checkpoint.pt", map_location=device)
model.load_state_dict(checkpoint["model_state_dict"])
optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
Export for Deployment
# TorchScript
scripted = torch.jit.script(model)
scripted.save("model.pt")
# ONNX
torch.onnx.export(
model,
dummy_input,
"model.onnx",
input_names=["input"],
output_names=["output"],
dynamic_axes={"input": {0: "batch"}, "output": {0: "batch"}},
)
Best Practices
- Always set model mode: Use
model.train()andmodel.eval()appropriately - Use inference_mode over no_grad: More efficient for inference
- Pin memory for GPU training: Set
pin_memory=Truein DataLoader - Profile before optimizing: Use
torch.profilerto find bottlenecks - Prefer bfloat16 over float16: Better numerical stability on modern GPUs
- Use torch.compile: Significant speedups with minimal code changes
- Set deterministic mode for reproducibility:
torch.manual_seed(42) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False
References
See reference/ for detailed documentation:
training-patterns.md- Advanced training techniquesdebugging.md- Debugging and profiling tools
Repository

itsmostafa
Author
itsmostafa/llm-engineering-skills/skills/pytorch
1
Stars
0
Forks
Updated21h ago
Added1w ago