Marketplace

ml-project-lifecycle

Plan ML projects using CRISP-DM, TDSP, and MLOps methodologies with proper phase gates and deliverables.

allowed_tools: Read, Write, Glob, Grep, Task

$ Instalar

git clone https://github.com/melodic-software/claude-code-plugins /tmp/claude-code-plugins && cp -r /tmp/claude-code-plugins/plugins/ai-ml-planning/skills/ml-project-lifecycle ~/.claude/skills/claude-code-plugins

// tip: Run this command in your terminal to install the skill


name: ml-project-lifecycle description: Plan ML projects using CRISP-DM, TDSP, and MLOps methodologies with proper phase gates and deliverables. allowed-tools: Read, Write, Glob, Grep, Task

ML Project Lifecycle Planning

When to Use This Skill

Use this skill when:

  • Ml Project Lifecycle tasks - Working on plan ml projects using crisp-dm, tdsp, and mlops methodologies with proper phase gates and deliverables
  • Planning or design - Need guidance on Ml Project Lifecycle approaches
  • Best practices - Want to follow established patterns and standards

Overview

ML project lifecycle methodologies provide structured approaches for planning, executing, and deploying machine learning systems with appropriate governance and quality gates.

CRISP-DM Methodology

Six Phases

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                        CRISP-DM Cycle                           β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚                                                                  β”‚
β”‚         β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”                                 β”‚
β”‚         β”‚   1. Business       β”‚                                 β”‚
β”‚         β”‚   Understanding     β”‚                                 β”‚
β”‚         β””β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜                                 β”‚
β”‚                  β”‚                                               β”‚
β”‚    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”                                β”‚
β”‚    β”‚             β–Ό             β”‚                                β”‚
β”‚    β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”‚                                β”‚
β”‚    β”‚  β”‚  2. Data            β”‚  β”‚                                β”‚
β”‚    β”‚  β”‚  Understanding      β”‚  β”‚                                β”‚
β”‚    β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β”‚                                β”‚
β”‚    β”‚           β”‚               β”‚                                β”‚
β”‚    β”‚           β–Ό               β”‚                                β”‚
β”‚    β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”‚                                β”‚
β”‚    β”‚  β”‚  3. Data            β”‚  β”‚                                β”‚
β”‚    β”‚  β”‚  Preparation        β”‚  β”‚                                β”‚
β”‚    β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β”‚                                β”‚
β”‚    β”‚           β”‚               β”‚                                β”‚
β”‚    β”‚           β–Ό               β”‚                                β”‚
β”‚    β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”‚                                β”‚
β”‚    β”‚  β”‚  4. Modeling        β”‚  β”‚                                β”‚
β”‚    β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β”‚                                β”‚
β”‚    β”‚           β”‚               β”‚                                β”‚
β”‚    β”‚           β–Ό               β”‚                                β”‚
β”‚    β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”‚                                β”‚
β”‚    β”‚  β”‚  5. Evaluation      β”‚  │◄──── Go/No-Go Decision        β”‚
β”‚    β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β”‚                                β”‚
β”‚    β”‚           β”‚               β”‚                                β”‚
β”‚    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜                                β”‚
β”‚                β–Ό                                                 β”‚
β”‚         β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”                                 β”‚
β”‚         β”‚  6. Deployment      β”‚                                 β”‚
β”‚         β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜                                 β”‚
β”‚                                                                  β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Phase Details

PhaseKey ActivitiesDeliverables
Business UnderstandingDefine objectives, success criteriaBusiness requirements doc
Data UnderstandingExplore, describe, verify dataData quality report
Data PreparationClean, transform, feature engineerTraining datasets
ModelingSelect algorithms, train, tuneModel artifacts, metrics
EvaluationAssess model, review processEvaluation report
DeploymentDeploy, monitor, maintainProduction system

MLOps Maturity Levels

Level Assessment

LevelDescriptionCharacteristics
0ManualNo automation, ad-hoc experiments
1ML PipelineAutomated training, manual deployment
2CI/CD PipelineAutomated training and deployment
3Full MLOpsAutomated monitoring, retraining

MLOps Components

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                      MLOps Architecture                          β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚                                                                  β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”   β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”   β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”              β”‚
β”‚  β”‚ Data       β”‚   β”‚ Feature    β”‚   β”‚ Model      β”‚              β”‚
β”‚  β”‚ Pipeline   │──►│ Store      │──►│ Training   β”‚              β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜   β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜   β””β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”˜              β”‚
β”‚                                          β”‚                      β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”   β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”   β”Œβ”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”              β”‚
β”‚  β”‚ Monitoring │◄──│ Model      │◄──│ Model      β”‚              β”‚
β”‚  β”‚ & Alerts   β”‚   β”‚ Serving    β”‚   β”‚ Registry   β”‚              β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜   β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜   β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜              β”‚
β”‚                                                                  β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”‚
β”‚  β”‚              Experiment Tracking & Versioning            β”‚    β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β”‚
β”‚                                                                  β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Project Planning Template

# ML Project Plan: [Project Name]

## 1. Business Understanding

### Objectives
- Primary goal: [What business problem are we solving?]
- Success metrics: [How will we measure success?]
- Stakeholders: [Who will use/be affected by this?]

### Constraints
- Timeline: [Project duration]
- Resources: [Team, compute, budget]
- Data availability: [What data do we have access to?]

## 2. Data Understanding

### Data Sources
| Source | Type | Volume | Refresh |
|--------|------|--------|---------|
| [Source 1] | [Type] | [Size] | [Frequency] |

### Data Quality Assessment
- Completeness: [% complete]
- Accuracy: [Validation approach]
- Timeliness: [Data freshness]

## 3. Data Preparation

### Feature Engineering Plan
| Feature | Source | Transformation | Rationale |
|---------|--------|----------------|-----------|
| [Feature 1] | [Column] | [Transform] | [Why] |

### Data Pipeline
- Extraction: [Method]
- Transformation: [Tools/approach]
- Loading: [Destination]

## 4. Modeling Approach

### Algorithm Selection
| Algorithm | Pros | Cons | Priority |
|-----------|------|------|----------|
| [Algorithm 1] | [Pros] | [Cons] | [1-3] |

### Experimentation Plan
- Baseline: [Simple model for comparison]
- Iterations: [Planned experiments]
- Hyperparameter strategy: [Grid/random/bayesian]

## 5. Evaluation Criteria

### Metrics
| Metric | Target | Baseline | Importance |
|--------|--------|----------|------------|
| [Metric 1] | [Target] | [Current] | [High/Med/Low] |

### Go/No-Go Criteria
- Minimum performance: [Threshold]
- Business validation: [Process]

## 6. Deployment Plan

### Serving Architecture
- Inference type: [Real-time/Batch]
- Infrastructure: [Cloud/Edge]
- Scaling: [Strategy]

### Monitoring
- Metrics: [What to track]
- Alerts: [Thresholds]
- Retraining: [Trigger conditions]

Experiment Tracking

Tracking Requirements

CategoryItems to Track
ParametersHyperparameters, configs
MetricsLoss, accuracy, custom
ArtifactsModels, plots, data
EnvironmentDependencies, hardware
CodeGit commit, branch

MLflow Integration

// Semantic Kernel with experiment tracking
public class ExperimentTracker
{
    public async Task TrackExperiment(
        string experimentName,
        Func<Task<ExperimentResult>> experiment)
    {
        var runId = Guid.NewGuid().ToString();
        var startTime = DateTime.UtcNow;

        try
        {
            // Log parameters
            await LogParameters(runId, new Dictionary<string, object>
            {
                ["model"] = "gpt-4o",
                ["temperature"] = 0.7,
                ["max_tokens"] = 1000
            });

            // Run experiment
            var result = await experiment();

            // Log metrics
            await LogMetrics(runId, new Dictionary<string, double>
            {
                ["accuracy"] = result.Accuracy,
                ["latency_ms"] = result.LatencyMs,
                ["token_cost"] = result.TokenCost
            });

            // Log artifacts
            await LogArtifact(runId, "prompt.txt", result.Prompt);
            await LogArtifact(runId, "response.json", result.Response);
        }
        finally
        {
            var duration = DateTime.UtcNow - startTime;
            await LogMetric(runId, "duration_seconds", duration.TotalSeconds);
        }
    }
}

Model Registry

Registry Structure

# Model Registry Entry

## Model: customer-churn-predictor

### Versions
| Version | Stage | Created | Metrics | Notes |
|---------|-------|---------|---------|-------|
| v1.0.0 | Production | 2024-01-15 | AUC: 0.85 | Baseline |
| v1.1.0 | Staging | 2024-02-01 | AUC: 0.88 | New features |
| v1.2.0 | Development | 2024-02-15 | AUC: 0.89 | Tuned |

### Promotion Criteria
- [ ] Performance >= baseline + 2%
- [ ] No regression on fairness metrics
- [ ] A/B test shows positive lift
- [ ] Stakeholder approval

Validation Checklist

  • Business objectives clearly defined
  • Success metrics identified and measurable
  • Data sources identified and accessible
  • Data quality assessed
  • Feature engineering strategy defined
  • Modeling approach selected
  • Evaluation criteria established
  • Deployment architecture planned
  • Monitoring strategy defined
  • MLOps maturity level targeted

Integration Points

Inputs from:

  • Business requirements β†’ Success criteria
  • Data architecture β†’ Data sources
  • Compliance planning β†’ Regulatory requirements

Outputs to:

  • model-selection skill β†’ Algorithm choices
  • ai-safety-planning skill β†’ Safety requirements
  • token-budgeting skill β†’ Cost estimation