Marketplace

identify-architecture

Analyze ML model architecture from papers and code. Use when understanding model structure for implementation.

$ Instalar

git clone https://github.com/mvillmow/ProjectOdyssey /tmp/ProjectOdyssey && cp -r /tmp/ProjectOdyssey/.claude/skills/tier-2/identify-architecture ~/.claude/skills/ProjectOdyssey

// tip: Run this command in your terminal to install the skill


name: identify-architecture description: "Analyze ML model architecture from papers and code. Use when understanding model structure for implementation." mcp_fallback: none category: analysis tier: 2

Identify Architecture

Analyze and document machine learning model architectures including layers, connections, and information flow.

When to Use

  • Understanding paper model designs
  • Planning model implementation
  • Comparing architecture variations
  • Documenting neural network structure

Quick Reference

# Extract architecture from paper
# Look for: "Figure X: Architecture of [Model]"
# Check for: Table with layer specifications
# Find: Layer descriptions (Conv2D, FC, BatchNorm, etc.)

# Visualize model structure (Mojo)
# var model: SimpleNet = ...
# print(model)  # Should show layer information

Workflow

  1. Locate architecture diagram: Find visual architecture representation in paper
  2. List layers: Enumerate all layers with type and parameters
  3. Document connections: Map data flow between layers (skip connections, merges)
  4. Extract layer parameters: For each layer record size, activation, normalization
  5. Create implementation plan: Translate to Mojo struct/function definitions

Output Format

Architecture documentation:

  • Model name and source
  • Layer-by-layer breakdown
  • Layer type (Conv2D, Dense, etc.)
  • Parameters (kernel size, stride, padding, activation)
  • Input/output shapes
  • Data flow diagram (text or ASCII)
  • Special components (skip connections, attention)

References

  • See extract-hyperparameters skill for model configuration
  • See CLAUDE.md > Mojo Syntax Standards for implementation patterns
  • See /notes/review/mojo-ml-patterns.md for architecture patterns