Marketplace
rag-systems
Build RAG systems - embeddings, vector stores, chunking, and retrieval optimization
$ Instalar
git clone https://github.com/pluginagentmarketplace/custom-plugin-ai-agents /tmp/custom-plugin-ai-agents && cp -r /tmp/custom-plugin-ai-agents/skills/rag-systems ~/.claude/skills/custom-plugin-ai-agents// tip: Run this command in your terminal to install the skill
SKILL.md
name: rag-systems description: Build RAG systems - embeddings, vector stores, chunking, and retrieval optimization sasmp_version: "1.3.0" bonded_agent: 03-rag-systems bond_type: PRIMARY_BOND version: "2.0.0"
RAG Systems
Build Retrieval-Augmented Generation systems for grounded responses.
When to Use This Skill
Invoke this skill when:
- Building Q&A over custom documents
- Implementing semantic search
- Setting up vector databases
- Optimizing retrieval quality
Parameter Schema
| Parameter | Type | Required | Description | Default |
|---|---|---|---|---|
task | string | Yes | RAG goal | - |
vector_db | enum | No | pinecone, weaviate, chroma, pgvector | chroma |
embedding_model | string | No | Embedding model | text-embedding-3-small |
chunk_size | int | No | Chunk size in chars | 1000 |
Quick Start
from langchain_openai import OpenAIEmbeddings
from langchain_chroma import Chroma
from langchain_text_splitters import RecursiveCharacterTextSplitter
# 1. Split documents
splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
chunks = splitter.split_documents(documents)
# 2. Create vector store
embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
vectorstore = Chroma.from_documents(chunks, embeddings)
# 3. Retrieve
docs = vectorstore.similarity_search("query", k=5)
Chunking Strategy
| Content Type | Size | Overlap | Rationale |
|---|---|---|---|
| Technical docs | 500-800 | 100 | Preserve code |
| Legal docs | 1000-1500 | 200 | Keep clauses |
| Q&A/FAQ | 200-400 | 50 | Atomic answers |
Embedding Costs
| Model | Cost/1M tokens |
|---|---|
| text-embedding-3-small | $0.02 |
| text-embedding-3-large | $0.13 |
| Cohere embed-v3 | $0.10 |
Troubleshooting
| Issue | Solution |
|---|---|
| Irrelevant results | Improve chunking, add reranking |
| Missing context | Increase k, use parent retriever |
| Hallucinations | Add "only use context" prompt |
| Slow retrieval | Add caching, reduce k |
Best Practices
- Always include source attribution
- Use hybrid search (dense + BM25)
- Implement reranking for quality
- Evaluate with RAGAS metrics
Related Skills
llm-integration- LLM for generationagent-memory- Memory retrievalai-agent-basics- Agentic RAG
References
Repository

pluginagentmarketplace
Author
pluginagentmarketplace/custom-plugin-ai-agents/skills/rag-systems
1
Stars
0
Forks
Updated3h ago
Added1w ago