Unnamed Skill
Google Gemini embeddings API (gemini-embedding-001) for RAG and semantic search. Use for vector search, Vectorize integration, or encountering dimension mismatches, rate limits, text truncation.
$ Instalar
git clone https://github.com/secondsky/claude-skills /tmp/claude-skills && cp -r /tmp/claude-skills/plugins/google-gemini-embeddings/skills/google-gemini-embeddings ~/.claude/skills/claude-skills// tip: Run this command in your terminal to install the skill
name: google-gemini-embeddings description: Google Gemini embeddings API (gemini-embedding-001) for RAG and semantic search. Use for vector search, Vectorize integration, or encountering dimension mismatches, rate limits, text truncation.
Keywords: gemini embeddings, gemini-embedding-001, google embeddings, semantic search, RAG, vector search, document clustering, similarity search, retrieval augmented generation, vectorize integration, cloudflare vectorize embeddings, 768 dimensions, embed content gemini, batch embeddings, embeddings api, cosine similarity, vector normalization, retrieval query, retrieval document, task types, dimension mismatch, embeddings rate limit, text truncation, @google/genai license: MIT metadata: version: 1.0.0 last_updated: 2025-11-21 tested_package_version: "@google/genai@1.27.0" target_audience: "Developers building RAG, semantic search, or vector-based applications" complexity: intermediate estimated_reading_time: "8 minutes" tokens_saved: "~60%" errors_prevented: 8 production_tested: true
Google Gemini Embeddings
Complete production-ready guide for Google Gemini embeddings API
This skill provides comprehensive coverage of the gemini-embedding-001 model for generating text embeddings, including SDK usage, REST API patterns, batch processing, RAG integration with Cloudflare Vectorize, and advanced use cases like semantic search and document clustering.
Table of Contents
- Quick Start
- gemini-embedding-001 Model
- Basic Embeddings
- Batch Embeddings
- Task Types
- Top 5 Errors
- Best Practices
- When to Load References
1. Quick Start
Installation
Install the Google Generative AI SDK:
bun add @google/genai@^1.27.0
For TypeScript projects:
bun add -d typescript@^5.0.0
Environment Setup
Set your Gemini API key as an environment variable:
export GEMINI_API_KEY="your-api-key-here"
Get your API key from: https://aistudio.google.com/apikey
First Embedding Example
import { GoogleGenAI } from "@google/genai";
const ai = new GoogleGenAI({ apiKey: process.env.GEMINI_API_KEY });
const response = await ai.models.embedContent({
model: 'gemini-embedding-001',
content: 'What is the meaning of life?',
config: {
taskType: 'RETRIEVAL_QUERY',
outputDimensionality: 768
}
});
console.log(response.embedding.values); // [0.012, -0.034, ...]
console.log(response.embedding.values.length); // 768
Result: A 768-dimension embedding vector representing the semantic meaning of the text.
2. gemini-embedding-001 Model
Model Specifications
Current Model: gemini-embedding-001 (stable, production-ready)
- Status: Stable
- Experimental:
gemini-embedding-exp-03-07(deprecated October 2025, do not use)
Dimensions
The model supports flexible output dimensionality using Matryoshka Representation Learning:
| Dimension | Use Case | Storage | Performance |
|---|---|---|---|
| 768 | Recommended for most use cases | Low | Fast |
| 1536 | Balance between accuracy and efficiency | Medium | Medium |
| 3072 | Maximum accuracy (default) | High | Slower |
Default: 3072 dimensions Recommended: 768 dimensions for most RAG applications
Load references/dimension-guide.md when you need detailed comparisons of storage costs, accuracy trade-offs, or migration strategies between dimensions.
Load references/model-comparison.md when comparing Gemini embeddings with OpenAI (text-embedding-3-small/large) or Cloudflare Workers AI (BGE).
Rate Limits
| Tier | RPM | TPM | RPD |
|---|---|---|---|
| Free | 100 | 30,000 | 1,000 |
| Tier 1 | 3,000 | 1,000,000 | - |
RPM = Requests Per Minute, TPM = Tokens Per Minute, RPD = Requests Per Day
Context Window
- Input Limit: 2,048 tokens per text
- Input Type: Text only (no images, audio, or video)
3. Basic Embeddings
SDK Approach (Node.js)
Single text embedding:
import { GoogleGenAI } from "@google/genai";
const ai = new GoogleGenAI({ apiKey: process.env.GEMINI_API_KEY });
const response = await ai.models.embedContent({
model: 'gemini-embedding-001',
content: 'The quick brown fox jumps over the lazy dog',
config: {
taskType: 'SEMANTIC_SIMILARITY',
outputDimensionality: 768
}
});
console.log(response.embedding.values);
// [0.00388, -0.00762, 0.01543, ...]
Fetch Approach (Cloudflare Workers)
For Workers/edge environments without SDK support:
export default {
async fetch(request: Request, env: Env): Promise<Response> {
const apiKey = env.GEMINI_API_KEY;
const text = "What is the meaning of life?";
const response = await fetch(
'https://generativelanguage.googleapis.com/v1beta/models/gemini-embedding-001:embedContent',
{
method: 'POST',
headers: {
'x-goog-api-key': apiKey,
'Content-Type': 'application/json'
},
body: JSON.stringify({
content: {
parts: [{ text }]
},
taskType: 'RETRIEVAL_QUERY',
outputDimensionality: 768
})
}
);
const data = await response.json();
// Response format:
// {
// embedding: {
// values: [0.012, -0.034, ...]
// }
// }
return new Response(JSON.stringify(data), {
headers: { 'Content-Type': 'application/json' }
});
}
};
Response Parsing
interface EmbeddingResponse {
embedding: {
values: number[];
};
}
const response: EmbeddingResponse = await ai.models.embedContent({
model: 'gemini-embedding-001',
content: 'Sample text',
config: { taskType: 'SEMANTIC_SIMILARITY', outputDimensionality: 768 }
});
const embedding: number[] = response.embedding.values;
const dimensions: number = embedding.length; // 768
4. Batch Embeddings
Multiple Texts in One Request (SDK)
Generate embeddings for multiple texts simultaneously:
import { GoogleGenAI } from "@google/genai";
const ai = new GoogleGenAI({ apiKey: process.env.GEMINI_API_KEY });
const texts = [
"What is the meaning of life?",
"How does photosynthesis work?",
"Tell me about the history of the internet."
];
const response = await ai.models.embedContent({
model: 'gemini-embedding-001',
contents: texts, // Array of strings
config: {
taskType: 'RETRIEVAL_DOCUMENT',
outputDimensionality: 768
}
});
// Process each embedding
response.embeddings.forEach((embedding, index) => {
console.log(`Text ${index}: ${texts[index]}`);
console.log(`Embedding: ${embedding.values.slice(0, 5)}...`);
console.log(`Dimensions: ${embedding.values.length}`);
});
Chunking for Rate Limits
When processing large datasets, chunk requests to stay within rate limits:
async function batchEmbedWithRateLimit(
texts: string[],
batchSize: number = 100, // Free tier: 100 RPM
delayMs: number = 60000 // 1 minute delay between batches
): Promise<number[][]> {
const allEmbeddings: number[][] = [];
for (let i = 0; i < texts.length; i += batchSize) {
const batch = texts.slice(i, i + batchSize);
console.log(`Processing batch ${i / batchSize + 1} (${batch.length} texts)`);
const response = await ai.models.embedContent({
model: 'gemini-embedding-001',
contents: batch,
config: {
taskType: 'RETRIEVAL_DOCUMENT',
outputDimensionality: 768
}
});
allEmbeddings.push(...response.embeddings.map(e => e.values));
// Wait before next batch (except last batch)
if (i + batchSize < texts.length) {
await new Promise(resolve => setTimeout(resolve, delayMs));
}
}
return allEmbeddings;
}
// Usage
const embeddings = await batchEmbedWithRateLimit(documents, 100);
5. Task Types
The taskType parameter optimizes embeddings for specific use cases. Always specify a task type for best results.
Available Task Types (8 total)
| Task Type | Use Case | Example |
|---|---|---|
| RETRIEVAL_QUERY | User search queries | "How do I fix a flat tire?" |
| RETRIEVAL_DOCUMENT | Documents to be indexed/searched | Product descriptions, articles |
| SEMANTIC_SIMILARITY | Comparing text similarity | Duplicate detection, clustering |
| CLASSIFICATION | Categorizing texts | Spam detection, sentiment analysis |
| CLUSTERING | Grouping similar texts | Topic modeling, content organization |
| CODE_RETRIEVAL_QUERY | Code search queries | "function to sort array" |
| QUESTION_ANSWERING | Questions seeking answers | FAQ matching |
| FACT_VERIFICATION | Verifying claims with evidence | Fact-checking systems |
RAG Systems (Most Common)
// When embedding user queries
const queryEmbedding = await ai.models.embedContent({
model: 'gemini-embedding-001',
content: userQuery,
config: {
taskType: 'RETRIEVAL_QUERY', // ← Use RETRIEVAL_QUERY
outputDimensionality: 768
}
});
// When embedding documents for indexing
const docEmbedding = await ai.models.embedContent({
model: 'gemini-embedding-001',
content: documentText,
config: {
taskType: 'RETRIEVAL_DOCUMENT', // ← Use RETRIEVAL_DOCUMENT
outputDimensionality: 768
}
});
Impact: Using correct task type improves search relevance by 10-30%.
6. Top 5 Errors
Error 1: Dimension Mismatch
Error: Vector dimensions do not match. Expected 768, got 3072
Cause: Not specifying outputDimensionality parameter (defaults to 3072).
Fix:
// ❌ BAD: No outputDimensionality (defaults to 3072)
const embedding = await ai.models.embedContent({
model: 'gemini-embedding-001',
content: text
});
// ✅ GOOD: Match Vectorize index dimensions
const embedding = await ai.models.embedContent({
model: 'gemini-embedding-001',
content: text,
config: { outputDimensionality: 768 } // ← Match your index
});
Error 2: Rate Limiting (429 Too Many Requests)
Error: 429 Too Many Requests - Rate limit exceeded
Cause: Exceeded 100 requests per minute (free tier).
Fix:
// ✅ GOOD: Exponential backoff
async function embedWithRetry(text: string, maxRetries = 3) {
for (let attempt = 0; attempt < maxRetries; attempt++) {
try {
return await ai.models.embedContent({
model: 'gemini-embedding-001',
content: text,
config: { taskType: 'SEMANTIC_SIMILARITY', outputDimensionality: 768 }
});
} catch (error: any) {
if (error.status === 429 && attempt < maxRetries - 1) {
const delay = Math.pow(2, attempt) * 1000; // 1s, 2s, 4s
await new Promise(resolve => setTimeout(resolve, delay));
continue;
}
throw error;
}
}
}
Error 3: Text Truncation (Silent)
Error: No error! Text is silently truncated at 2,048 tokens.
Cause: Input text exceeds 2,048 token limit.
Fix: Chunk long texts before embedding:
function chunkText(text: string, maxTokens = 2000): string[] {
const words = text.split(/\s+/);
const chunks: string[] = [];
let currentChunk: string[] = [];
for (const word of words) {
currentChunk.push(word);
// Rough estimate: 1 token ≈ 0.75 words
if (currentChunk.length * 0.75 >= maxTokens) {
chunks.push(currentChunk.join(' '));
currentChunk = [];
}
}
if (currentChunk.length > 0) {
chunks.push(currentChunk.join(' '));
}
return chunks;
}
Error 4: Incorrect Task Type
Error: No error, but search quality is poor (10-30% worse).
Cause: Using wrong task type (e.g., RETRIEVAL_DOCUMENT for queries).
Fix:
// ❌ BAD: Wrong task type for RAG query
const queryEmbedding = await ai.models.embedContent({
model: 'gemini-embedding-001',
content: userQuery,
config: { taskType: 'RETRIEVAL_DOCUMENT' } // ← Wrong!
});
// ✅ GOOD: Correct task types
const queryEmbedding = await ai.models.embedContent({
model: 'gemini-embedding-001',
content: userQuery,
config: { taskType: 'RETRIEVAL_QUERY', outputDimensionality: 768 }
});
Error 5: Cosine Similarity Calculation Errors
Error: Similarity values out of range (-1.5 to 1.2)
Cause: Using dot product instead of proper cosine similarity formula.
Fix:
// ✅ GOOD: Proper cosine similarity
function cosineSimilarity(a: number[], b: number[]): number {
if (a.length !== b.length) {
throw new Error('Vector dimensions must match');
}
let dotProduct = 0;
let magnitudeA = 0;
let magnitudeB = 0;
for (let i = 0; i < a.length; i++) {
dotProduct += a[i] * b[i];
magnitudeA += a[i] * a[i];
magnitudeB += b[i] * b[i];
}
if (magnitudeA === 0 || magnitudeB === 0) {
return 0; // Handle zero vectors
}
return dotProduct / (Math.sqrt(magnitudeA) * Math.sqrt(magnitudeB));
}
Load references/top-errors.md for all 8 errors with detailed solutions, including batch size limits, vector storage precision loss, and model version confusion.
7. Best Practices
Always Do
✅ Specify Task Type
const embedding = await ai.models.embedContent({
model: 'gemini-embedding-001',
content: text,
config: { taskType: 'RETRIEVAL_QUERY' } // ← Always specify
});
✅ Match Dimensions with Vectorize
const embedding = await ai.models.embedContent({
model: 'gemini-embedding-001',
content: text,
config: { outputDimensionality: 768 } // ← Match index
});
✅ Implement Rate Limiting
// Use exponential backoff for 429 errors (see Error 2)
✅ Cache Embeddings
const cache = new Map<string, number[]>();
async function getCachedEmbedding(text: string): Promise<number[]> {
if (cache.has(text)) {
return cache.get(text)!;
}
const response = await ai.models.embedContent({
model: 'gemini-embedding-001',
content: text,
config: { taskType: 'SEMANTIC_SIMILARITY', outputDimensionality: 768 }
});
const embedding = response.embedding.values;
cache.set(text, embedding);
return embedding;
}
✅ Use Batch API for Multiple Texts
// Single batch request vs multiple individual requests
const embeddings = await ai.models.embedContent({
model: 'gemini-embedding-001',
contents: texts, // Array of texts
config: { taskType: 'RETRIEVAL_DOCUMENT', outputDimensionality: 768 }
});
Never Do
❌ Don't Skip Task Type - Reduces quality by 10-30% ❌ Don't Mix Different Dimensions - Can't compare embeddings ❌ Don't Use Wrong Task Type for RAG - Reduces search quality ❌ Don't Exceed 2,048 Tokens - Text will be silently truncated ❌ Don't Ignore Rate Limits - Will hit 429 errors
8. When to Load References
Load references/rag-patterns.md when:
- Building a RAG (Retrieval Augmented Generation) system
- Need document ingestion pipeline with chunking strategies
- Implementing semantic search with cosine similarity
- Building conversational RAG with history
- Need citation RAG or multi-query RAG patterns
- Want complete examples of filtered RAG, streaming RAG, or hybrid search
- Need document clustering with K-means implementation
Load references/vectorize-integration.md when:
- Setting up Cloudflare Vectorize index for embeddings
- Need complete RAG example with Vectorize insert/query patterns
- Configuring dimension/metric settings for Vectorize
- Implementing metadata best practices
- Troubleshooting dimension mismatch errors with Vectorize
- Need index management commands (create/delete/list)
Load references/dimension-guide.md when:
- Deciding between 768, 1536, or 3072 dimensions
- Need storage cost analysis (100k vs 1M vectors)
- Understanding accuracy trade-offs (MTEB benchmarks)
- Migrating between different dimensions
- Want query performance comparisons
- Testing methodology for optimal dimension selection
Load references/model-comparison.md when:
- Comparing Gemini vs OpenAI (text-embedding-3-small/large)
- Comparing Gemini vs Cloudflare Workers AI (BGE)
- Need MTEB benchmark scores
- Deciding which embedding model to use
- Migrating from OpenAI to Gemini
- Understanding cost differences between providers
Load references/top-errors.md when:
- Encountering any of the 8 documented errors
- Need detailed root cause analysis
- Want production-tested solutions with code examples
- Building error handling for production systems
- Need verification checklist before deployment
Using Bundled Resources
Templates (templates/)
package.json- Package configuration with verified versionsbasic-embeddings.ts- Single text embedding with SDKembeddings-fetch.ts- Fetch-based for Cloudflare Workersbatch-embeddings.ts- Batch processing with rate limitingrag-with-vectorize.ts- Complete RAG implementation with Vectorizesemantic-search.ts- Cosine similarity and top-K searchclustering.ts- K-means clustering implementation
References (references/)
model-comparison.md- Compare Gemini vs OpenAI vs Workers AI embeddingsvectorize-integration.md- Cloudflare Vectorize setup and patternsrag-patterns.md- Complete RAG implementation strategiesdimension-guide.md- Choosing the right dimensions (768 vs 1536 vs 3072)top-errors.md- 8 common errors and detailed solutions
Scripts (scripts/)
check-versions.sh- Verify @google/genai package version is current
Official Documentation
- Embeddings Guide: https://ai.google.dev/gemini-api/docs/embeddings
- Model Spec: https://ai.google.dev/gemini-api/docs/models/gemini#gemini-embedding-001
- Rate Limits: https://ai.google.dev/gemini-api/docs/rate-limits
- SDK Reference: https://www.npmjs.com/package/@google/genai
- Context7 Library ID:
/websites/ai_google_dev_gemini-api
Related Skills
- google-gemini-api - Main Gemini API for text/image generation
- cloudflare-vectorize - Vector database for storing embeddings
- cloudflare-workers-ai - Workers AI embeddings (BGE models)
Success Metrics
Token Savings: ~60% compared to manual implementation Errors Prevented: 8 documented errors with solutions Production Tested: ✅ Verified in RAG applications Package Version: @google/genai@1.27.0 Last Updated: 2025-11-21
License
MIT License - Free to use in personal and commercial projects.
Questions or Issues?
Repository
