agent-orchestration

Orchestrate AI agents using Claude Flow, swarm coordination, and multi-agent workflows. Use for complex tasks requiring multiple specialized agents, parallel execution, or coordinated problem-solving.

$ Instalar

git clone https://github.com/vamseeachanta/workspace-hub /tmp/workspace-hub && cp -r /tmp/workspace-hub/.claude/skills/workspace-hub/agent-orchestration ~/.claude/skills/workspace-hub

// tip: Run this command in your terminal to install the skill


name: agent-orchestration description: Orchestrate AI agents using Claude Flow, swarm coordination, and multi-agent workflows. Use for complex tasks requiring multiple specialized agents, parallel execution, or coordinated problem-solving. version: 1.1.0 category: workspace-hub type: skill capabilities:

  • swarm_coordination
  • agent_spawning
  • task_orchestration
  • memory_management
  • parallel_execution tools:
  • Task
  • Bash
  • mcp__claude-flow__swarm_init
  • mcp__claude-flow__agent_spawn
  • mcp__claude-flow__agents_spawn_parallel
  • mcp__claude-flow__task_orchestrate
  • mcp__claude-flow__swarm_status
  • mcp__claude-flow__agent_list
  • mcp__claude-flow__memory_usage
  • mcp__claude-flow__memory_search related_skills:
  • sparc-workflow
  • repo-sync
  • compliance-check hooks: pre: | npx claude-flow@alpha hooks pre-task --description "Agent orchestration" post: | npx claude-flow@alpha hooks post-task --task-id "swarm-complete"

Agent Orchestration Skill

Coordinate multiple AI agents using swarm topologies, parallel execution, and Claude Flow for complex multi-step tasks.

Quick Start

// Initialize a swarm for complex task
mcp__claude-flow__swarm_init({ topology: "hierarchical", maxAgents: 5 })

// Spawn specialized agents
mcp__claude-flow__agents_spawn_parallel({
    agents: [
        { type: "coder", name: "backend" },
        { type: "tester", name: "qa" },
        { type: "reviewer", name: "quality" }
    ]
})

// Orchestrate the task
mcp__claude-flow__task_orchestrate({
    task: "Build REST API with tests",
    strategy: "adaptive"
})

When to Use

  • Complex tasks requiring multiple specialized agents (coder, tester, reviewer)
  • Parallel execution to speed up independent subtasks
  • Code review requiring multiple perspectives (security, performance, style)
  • Research tasks needing distributed information gathering
  • Cross-repository changes requiring coordinated commits

Prerequisites

  • Claude Flow MCP server configured (claude mcp add claude-flow npx claude-flow@alpha mcp start)
  • Understanding of swarm topologies
  • Familiarity with agent types and capabilities
  • Claude Code Task tool for agent execution

Overview

This skill enables orchestration of multiple AI agents for complex tasks. It covers swarm initialization, agent spawning, task coordination, and multi-agent workflows using Claude Flow and the workspace-hub agent ecosystem.

Agent Categories

Core Agents

AgentPurpose
coderImplementation and coding
reviewerCode review and quality
testerTesting and verification
plannerStrategic planning
researcherInformation gathering

SPARC Agents

AgentPurpose
specificationRequirements analysis
pseudocodeAlgorithm design
architectureSystem design
refinementTDD implementation

Specialized Agents

AgentPurpose
backend-devBackend/API development
ml-developerMachine learning
cicd-engineerCI/CD pipelines
system-architectArchitecture design
api-docsAPI documentation

GitHub Agents

AgentPurpose
pr-managerPull request management
code-review-swarmAutomated code review
issue-trackerIssue management

Swarm Topologies

Hierarchical

Coordinator delegates to specialized workers:

        ┌─────────────────┐
        │   Coordinator   │
        └────────┬────────┘
                 │
    ┌────────────┼────────────┐
    │            │            │
    ▼            ▼            ▼
┌───────┐  ┌───────┐  ┌───────┐
│Worker1│  │Worker2│  │Worker3│
└───────┘  └───────┘  └───────┘

Best for: Complex tasks with clear subtask boundaries

// Initialize hierarchical swarm
mcp__claude-flow__swarm_init({
    topology: "hierarchical",
    maxAgents: 5,
    strategy: "auto"
})

Mesh

Peer-to-peer collaboration:

┌───────┐     ┌───────┐
│Agent A│◄───►│Agent B│
└───┬───┘     └───┬───┘
    │      ╲  ╱   │
    │       ╲╱    │
    │       ╱╲    │
    │      ╱  ╲   │
┌───▼───┐     ┌───▼───┐
│Agent C│◄───►│Agent D│
└───────┘     └───────┘

Best for: Collaborative tasks requiring shared context

mcp__claude-flow__swarm_init({
    topology: "mesh",
    maxAgents: 4
})

Star

Central hub with peripheral agents:

         ┌───────┐
         │Agent A│
         └───┬───┘
             │
┌───────┐  ┌─▼─┐  ┌───────┐
│Agent B├──►Hub◄──┤Agent C│
└───────┘  └─┬─┘  └───────┘
             │
         ┌───▼───┐
         │Agent D│
         └───────┘

Best for: Tasks with central coordination point

mcp__claude-flow__swarm_init({
    topology: "star",
    maxAgents: 6
})

Ring

Sequential processing:

┌───────┐     ┌───────┐
│Agent A│────►│Agent B│
└───┬───┘     └───┬───┘
    ▲             │
    │             ▼
┌───┴───┐     ┌───────┐
│Agent D│◄────│Agent C│
└───────┘     └───────┘

Best for: Pipeline processing, sequential workflows

mcp__claude-flow__swarm_init({
    topology: "ring",
    maxAgents: 4
})

Agent Spawning

Spawn Single Agent

mcp__claude-flow__agent_spawn({
    type: "coder",
    name: "implementation-agent",
    capabilities: ["python", "typescript", "api-development"]
})

Spawn Multiple Agents in Parallel

mcp__claude-flow__agents_spawn_parallel({
    agents: [
        { type: "coder", name: "backend-coder" },
        { type: "tester", name: "test-writer" },
        { type: "reviewer", name: "code-reviewer" }
    ],
    maxConcurrency: 3
})

Agent Types

// Available agent types
const agentTypes = [
    "coordinator",
    "analyst",
    "optimizer",
    "documenter",
    "monitor",
    "specialist",
    "architect",
    "task-orchestrator",
    "code-analyzer",
    "perf-analyzer",
    "api-docs",
    "performance-benchmarker",
    "system-architect",
    "researcher",
    "coder",
    "tester",
    "reviewer"
];

Task Orchestration

Simple Task

mcp__claude-flow__task_orchestrate({
    task: "Implement user authentication with JWT",
    strategy: "sequential",
    priority: "high"
})

Complex Task with Dependencies

mcp__claude-flow__task_orchestrate({
    task: "Build complete API with tests and documentation",
    strategy: "adaptive",
    priority: "high",
    dependencies: [
        "design-api-spec",
        "write-tests",
        "implement-endpoints",
        "create-documentation"
    ]
})

Orchestration Strategies

StrategyDescription
parallelExecute independent tasks simultaneously
sequentialExecute tasks in order
adaptiveDynamically adjust based on results
balancedBalance load across agents

Workflow Patterns

1. Code Review Swarm

// Initialize review swarm
await mcp__claude-flow__swarm_init({
    topology: "hierarchical",
    maxAgents: 4
});

// Spawn review agents
await mcp__claude-flow__agents_spawn_parallel({
    agents: [
        { type: "reviewer", name: "security-reviewer" },
        { type: "reviewer", name: "performance-reviewer" },
        { type: "reviewer", name: "style-reviewer" }
    ]
});

// Orchestrate review
await mcp__claude-flow__task_orchestrate({
    task: "Review PR #123 for security, performance, and style",
    strategy: "parallel"
});

2. Feature Implementation

// Sequential SPARC workflow
await mcp__claude-flow__swarm_init({ topology: "ring" });

// Phase agents
const phases = [
    { type: "specialist", name: "specification-agent" },
    { type: "specialist", name: "pseudocode-agent" },
    { type: "architect", name: "architecture-agent" },
    { type: "coder", name: "implementation-agent" },
    { type: "tester", name: "testing-agent" }
];

await mcp__claude-flow__agents_spawn_parallel({ agents: phases });

await mcp__claude-flow__task_orchestrate({
    task: "Implement new feature following SPARC methodology",
    strategy: "sequential"
});

3. Research and Analysis

// Mesh for collaborative research
await mcp__claude-flow__swarm_init({ topology: "mesh" });

await mcp__claude-flow__agents_spawn_parallel({
    agents: [
        { type: "researcher", name: "literature-reviewer" },
        { type: "analyst", name: "data-analyst" },
        { type: "documenter", name: "summary-writer" }
    ]
});

await mcp__claude-flow__task_orchestrate({
    task: "Research and analyze best practices for microservices",
    strategy: "adaptive"
});

Execution Checklist

  • Determine task complexity and required agent types
  • Select appropriate swarm topology
  • Initialize swarm with correct configuration
  • Spawn required agents (prefer parallel spawning)
  • Define task with clear objectives and dependencies
  • Orchestrate with appropriate strategy
  • Monitor progress with status checks
  • Collect and consolidate results
  • Clean up swarm when complete

Monitoring and Status

Check Swarm Status

mcp__claude-flow__swarm_status({ swarmId: "current" })

Monitor Agent Metrics

mcp__claude-flow__agent_metrics({ agentId: "agent-123" })

List Active Agents

mcp__claude-flow__agent_list({ swarmId: "current" })

Get Task Results

mcp__claude-flow__task_results({ taskId: "task-456" })

Memory Management

Store Information

mcp__claude-flow__memory_usage({
    action: "store",
    key: "project-context",
    value: JSON.stringify(projectData),
    namespace: "project-alpha"
})

Retrieve Information

mcp__claude-flow__memory_usage({
    action: "retrieve",
    key: "project-context",
    namespace: "project-alpha"
})

Search Memory

mcp__claude-flow__memory_search({
    pattern: "api-*",
    namespace: "project-alpha",
    limit: 10
})

Error Handling

Agent Spawn Failures

// Check agent status after spawning
const status = await mcp__claude-flow__agent_list({ swarmId: "current" });
if (status.agents.length < expectedCount) {
    // Retry failed spawns
    await mcp__claude-flow__agent_spawn({ type: "coder", name: "retry-agent" });
}

Task Orchestration Failures

// Use fault tolerance for critical tasks
mcp__claude-flow__daa_fault_tolerance({
    agentId: "agent-123",
    strategy: "restart"  // or "failover", "ignore"
})

Recovery

// Create snapshot before risky operations
mcp__claude-flow__state_snapshot({ name: "before-risky-operation" })

// Restore if needed
mcp__claude-flow__context_restore({ snapshotId: "snapshot-id" })

Swarm Coordination Issues

  • Topology mismatch: Choose topology based on task structure
  • Agent overload: Scale down or use load balancing
  • Memory conflicts: Use namespaced memory storage
  • Timeout issues: Set reasonable timeouts, monitor progress

Metrics & Success Criteria

  • Agent Spawn Time: < 2 seconds per agent
  • Task Completion Rate: >= 95%
  • Coordination Overhead: < 10% of total execution time
  • Memory Usage: Efficient namespace isolation
  • Parallel Speedup: 2-4x improvement for parallelizable tasks

Performance Optimization

Topology Selection

Choose topology based on task:

Task TypeRecommended Topology
Code reviewHierarchical
BrainstormingMesh
Pipeline processingRing
Centralized coordinationStar
Mixed workloadsAdaptive

Auto-Optimize

mcp__claude-flow__topology_optimize({ swarmId: "current" })

Load Balancing

mcp__claude-flow__load_balance({
    swarmId: "current",
    tasks: ["task1", "task2", "task3"]
})

Integration with Claude Code

Using Task Tool

For complex tasks, use Claude Code's Task tool:

Task({
    description: "Complex multi-step analysis",
    prompt: "Analyze codebase and suggest improvements",
    subagent_type: "code-analyzer"
})

Parallel Agent Execution

Launch multiple agents in parallel:

// Single message with multiple Task calls
Task({ subagent_type: "researcher", ... })
Task({ subagent_type: "coder", ... })
Task({ subagent_type: "reviewer", ... })

Integration Points

MCP Tools

// Full orchestration example
mcp__claude-flow__swarm_init({ topology: "hierarchical", maxAgents: 6 })
mcp__claude-flow__agents_spawn_parallel({ agents: [...] })
mcp__claude-flow__task_orchestrate({ task: "...", strategy: "adaptive" })
mcp__claude-flow__swarm_status({})
mcp__claude-flow__swarm_destroy({ swarmId: "..." })

Hooks

# Pre-task hook
npx claude-flow@alpha hooks pre-task --description "[task]"

# Post-task hook
npx claude-flow@alpha hooks post-task --task-id "[task]"

Related Skills

Best Practices

Agent Selection

  1. Match agent to task: Use specialized agents
  2. Limit concurrency: Don't spawn too many agents
  3. Clear instructions: Provide detailed prompts
  4. Monitor progress: Check status regularly

Swarm Management

  1. Choose appropriate topology: Based on task structure
  2. Set reasonable timeouts: Prevent hung agents
  3. Use memory for context: Share information between agents
  4. Clean up: Destroy swarms when done

Error Handling

  1. Plan for failures: Use fault tolerance
  2. Create snapshots: Before risky operations
  3. Log extensively: For debugging
  4. Graceful degradation: Handle partial failures

Cleanup

Destroy Swarm

mcp__claude-flow__swarm_destroy({ swarmId: "swarm-123" })

Scale Down

mcp__claude-flow__swarm_scale({
    swarmId: "current",
    targetSize: 2
})

References


Version History

  • 1.1.0 (2026-01-02): Upgraded to SKILL_TEMPLATE_v2 format - added Quick Start, When to Use, Execution Checklist, Error Handling consolidation, Metrics, Integration Points, MCP hooks
  • 1.0.0 (2024-10-15): Initial release with swarm topologies, agent spawning, task orchestration, memory management, performance optimization