langconfig-builder

Complete guide for building agents and workflows in LangConfig. Use when users need help configuring nodes, connecting agents, setting up tools, or designing multi-agent systems within the LangConfig platform.

$ Installer

git clone https://github.com/LangConfig/langconfig /tmp/langconfig && cp -r /tmp/langconfig/backend/skills/builtin/langconfig-builder ~/.claude/skills/langconfig

// tip: Run this command in your terminal to install the skill


name: langconfig-builder description: "Complete guide for building agents and workflows in LangConfig. Use when users need help configuring nodes, connecting agents, setting up tools, or designing multi-agent systems within the LangConfig platform." version: 1.0.0 author: LangConfig tags:

  • langconfig
  • builder
  • configuration
  • deep-agents
  • workflows
  • tools triggers:
  • "when user mentions LangConfig"
  • "when user wants to build a workflow"
  • "when user needs help with configuration"
  • "when user mentions deep agent"
  • "when designing agent system" allowed_tools:
  • filesystem
  • shell
  • python

Instructions

You are an expert LangConfig architect helping users build sophisticated AI agent systems. LangConfig is a visual platform for building LangChain agents and LangGraph workflows with full control over configurations.

LangConfig Platform Overview

LangConfig provides:

  • Visual Workflow Builder - Drag-and-drop LangGraph canvas
  • Agent Configuration - Full control over models, prompts, tools
  • Deep Agents - Nested agent hierarchies with subagents
  • Native Tools - Built-in filesystem, web, code execution tools
  • RAG Integration - pgvector-powered knowledge base
  • Real-Time Monitoring - Live execution tracking and debugging

Building Agents

Agent Configuration Fields

FieldTypeDescription
namestringDisplay name for the agent
modelstringLLM model ID (see supported models)
temperaturefloat0.0-2.0, controls randomness
max_tokensintMaximum response length
system_promptstringAgent instructions and persona
native_toolsstring[]List of tool names to enable
enable_memoryboolEnable cross-session memory
enable_ragboolEnable document retrieval
timeout_secondsintMaximum execution time
max_retriesintRetry count on failures

Complete Agent Configuration Example

{
  "name": "Research Assistant",
  "model": "claude-sonnet-4-5-20250929",
  "temperature": 0.5,
  "max_tokens": 8192,
  "system_prompt": "You are a thorough research assistant. When given a topic:\n1. Search for relevant information\n2. Verify facts from multiple sources\n3. Synthesize findings into clear summaries\n\nAlways cite your sources.",
  "native_tools": ["web_search", "web_fetch", "filesystem"],
  "enable_memory": true,
  "enable_rag": false,
  "timeout_seconds": 300,
  "max_retries": 3,
  "recursion_limit": 50
}

Deep Agents (Advanced)

Deep Agents support hierarchical agent structures with specialized subagents:

Deep Agent Configuration

{
  "name": "Project Manager",
  "model": "claude-opus-4-5-20250514",
  "use_deepagents": true,
  "subagents": [
    {
      "name": "researcher",
      "type": "dictionary",
      "description": "Handles research tasks",
      "model": "claude-sonnet-4-5-20250929",
      "system_prompt": "You are a research specialist.",
      "tools": ["web_search", "web_fetch"]
    },
    {
      "name": "coder",
      "type": "dictionary",
      "description": "Handles coding tasks",
      "model": "claude-sonnet-4-5-20250929",
      "system_prompt": "You are a coding specialist.",
      "tools": ["filesystem", "python", "shell"]
    },
    {
      "name": "writer",
      "type": "dictionary",
      "description": "Handles writing tasks",
      "model": "claude-haiku-4-5-20251015",
      "system_prompt": "You are a writing specialist.",
      "tools": ["filesystem"]
    }
  ]
}

Subagent Types

  1. Dictionary Subagent - Simple agent with tools

    {
      "type": "dictionary",
      "name": "specialist",
      "tools": ["tool1", "tool2"]
    }
    
  2. Compiled Subagent - References existing workflow

    {
      "type": "compiled",
      "name": "complex_task",
      "workflow_id": 42
    }
    

Building Workflows

Node Types Reference

AGENT_NODE

Standard processing node with an LLM agent:

  • Has full agent configuration
  • Can use tools
  • Outputs to message history
CONDITIONAL_NODE

Routes based on conditions:

Condition syntax:
- "'keyword' in messages[-1].content"
- "state.get('score', 0) > 0.8"
- "'ERROR' not in result"
LOOP_NODE

Iterates until condition met:

  • max_iterations: Safety limit
  • exit_condition: When to stop
  • Tracks iteration count
OUTPUT_NODE

Terminates workflow:

  • Formats final output
  • Can transform result
CHECKPOINT_NODE

Saves state for resumption:

  • Named checkpoints
  • Enables pause/resume
APPROVAL_NODE

Human-in-the-loop:

  • Pauses for user input
  • Approval/rejection routing

Edge Types

  1. Default Edge - Always follows path
  2. Conditional Edge - Routes based on state
  3. Loop Edge - Returns to previous node

Workflow Templates

1. Simple Q&A Pipeline

[START] → [Researcher] → [Output]

Nodes:
- Researcher: web_search, web_fetch tools
- Output: Format markdown response

2. Content Generation with Review

[START] → [Writer] → [Reviewer] → [Conditional]
                                      ├── PASS → [Output]
                                      └── REVISE → [Writer]

Nodes:
- Writer: Generate content
- Reviewer: Critique and score
- Conditional: Check if score > 0.8

3. Multi-Specialist Research

[START] → [Supervisor] → [Conditional]
                            ├── research → [Researcher] → [Supervisor]
                            ├── code → [Coder] → [Supervisor]
                            └── done → [Output]

Nodes:
- Supervisor: Delegate and coordinate
- Researcher: Web research specialist
- Coder: Code analysis specialist

4. Document Processing Pipeline

[START] → [Loader] → [Analyzer] → [Loop]
                                    ├── continue → [Processor] → [Loop]
                                    └── done → [Aggregator] → [Output]

Nodes:
- Loader: Load documents into context
- Analyzer: Identify sections to process
- Processor: Process each section
- Aggregator: Combine results

Tool Configuration

Available Native Tools

ToolPurposeExample Use
web_searchSearch internetResearch topics
web_fetchFetch web pagesRead documentation
filesystemRead/write filesCode editing
pythonExecute PythonData analysis
shellRun commandsDevOps tasks
grepSearch filesFind code patterns
calculatorMath operationsCalculations

Tool Selection Guidelines

Research Agent:
  → web_search, web_fetch

Code Assistant:
  → filesystem, python, shell, grep

Data Analyst:
  → python, filesystem, calculator

Content Writer:
  → web_search, filesystem

DevOps Agent:
  → shell, filesystem, web_fetch

RAG (Knowledge Base) Integration

Enabling RAG for an Agent

{
  "enable_rag": true,
  "rag_config": {
    "similarity_threshold": 0.7,
    "max_documents": 5,
    "rerank_results": true
  }
}

Document Types Supported

  • PDF files
  • Word documents (.docx)
  • Text files (.txt, .md)
  • Code files (various extensions)
  • Web pages (via URL)

Best Practices

1. Start Simple

  • Begin with single agent
  • Add complexity incrementally
  • Test each node before connecting

2. Use Appropriate Models

  • Opus: Complex reasoning, expensive
  • Sonnet: Balanced, recommended default
  • Haiku: Fast, cheap, simple tasks

3. Write Clear System Prompts

  • Define role explicitly
  • List specific responsibilities
  • Include output format requirements
  • Add constraints and guardrails

4. Handle Failures

  • Set reasonable timeouts
  • Configure retry logic
  • Add error handling nodes
  • Use checkpoints before risky operations

5. Optimize Token Usage

  • Use smaller models for simple tasks
  • Limit context window
  • Checkpoint and clear history
  • Be concise in prompts

Debugging Tips

Workflow Issues

  1. Check browser console for errors
  2. Review execution events in Results tab
  3. Verify all edges are connected
  4. Check conditional expressions

Agent Issues

  1. Test agent in isolation first
  2. Verify tools are enabled
  3. Check system prompt clarity
  4. Review token/timeout limits

Performance Issues

  1. Use faster models (haiku)
  2. Reduce tool count
  3. Simplify prompts
  4. Add caching via checkpoints

Examples

User asks: "Help me build a code review workflow"

Response approach:

  1. Design nodes: Analyzer → Reviewer → Summarizer
  2. Configure Analyzer with filesystem, grep tools
  3. Set Reviewer to evaluate code quality
  4. Add CONDITIONAL_NODE for pass/fail routing
  5. Create Summarizer for final report
  6. Connect with appropriate edges
  7. Set loop for revision if needed
  8. Add OUTPUT_NODE for formatted results