opencode-cli

This skill should be used when configuring or using the OpenCode CLI for headless LLM automation. Use when the user asks to "configure opencode", "use opencode cli", "set up opencode", "opencode run command", "opencode model selection", "opencode providers", "opencode vertex ai", "opencode mcp servers", "opencode ollama", "opencode local models", "opencode deepseek", "opencode kimi", "opencode mistral", "fallback cli tool", or "headless llm cli". Covers command syntax, provider configuration, Vertex AI setup, MCP servers, local models, cloud providers, and subprocess integration patterns.

$ Installer

git clone https://github.com/SpillwaveSolutions/opencode_cli ~/.claude/skills/opencode_cli

// tip: Run this command in your terminal to install the skill


name: opencode-cli description: This skill should be used when configuring or using the OpenCode CLI for headless LLM automation. Use when the user asks to "configure opencode", "use opencode cli", "set up opencode", "opencode run command", "opencode model selection", "opencode providers", "opencode vertex ai", "opencode mcp servers", "opencode ollama", "opencode local models", "opencode deepseek", "opencode kimi", "opencode mistral", "fallback cli tool", or "headless llm cli". Covers command syntax, provider configuration, Vertex AI setup, MCP servers, local models, cloud providers, and subprocess integration patterns.

OpenCode CLI Skill

Use OpenCode CLI for headless LLM automation via subprocess invocation.

Table of Contents

Quick Start

  1. Install OpenCode CLI (see OpenCode documentation)
  2. Set environment variables for the provider:
    export ANTHROPIC_API_KEY="sk-..."  # For Anthropic
    # OR
    export GOOGLE_CLOUD_PROJECT="project-id"  # For Vertex AI
    
  3. Verify installation:
    opencode --version
    
  4. Test with a simple prompt:
    opencode run --model google/gemini-2.5-pro "Hello, world"
    

Overview

OpenCode is a Go-based CLI that provides access to 75+ LLM providers through a unified interface. This skill focuses on the headless run command for automation and subprocess integration.

Basic Usage

Command Format

opencode run --model <provider/model> "<prompt>"

Key points:

  • Use run subcommand for headless (non-interactive) mode
  • Model format is always provider/model
  • Prompt is a positional argument at the end
  • No stdin support (unlike Claude CLI's -p flag)

Examples

# Using Anthropic Claude
opencode run --model anthropic/claude-sonnet-4-20250514 "Explain this code"

# Using Google Gemini
opencode run --model google/gemini-2.5-pro "Review this architecture"

# Using free Grok tier
opencode run --model opencode/grok-code "Generate tests for this function"

Model Format

Models use the pattern provider/model-name:

ProviderExample Model
anthropicanthropic/claude-sonnet-4-20250514
googlegoogle/gemini-2.5-pro
opencodeopencode/grok-code (free tier)
openaiopenai/gpt-4o
google-vertexgoogle-vertex/gemini-2.5-pro

Configuration

Config File Locations

  1. Environment variable: OPENCODE_CONFIG path
  2. Project-level: opencode.json in project root
  3. Global: ~/.config/opencode/opencode.json

Configs are merged (project overrides global).

Basic Configuration

{
  "$schema": "https://opencode.ai/config.json",
  "model": "anthropic/claude-sonnet-4-5",
  "small_model": "anthropic/claude-haiku-4-5"
}

Authentication

Credentials stored in ~/.local/share/opencode/auth.json after running /connect in TUI mode, or configure via environment variables.

Reference Guides

Load the appropriate reference for detailed configuration:

TaskReference File
Setting up Google Vertex AIvertex-ai-setup.md
Configuring providers (Anthropic, OpenAI, etc.)provider-config.md
Cloud providers (Deepseek, Kimi, Mistral, etc.)cloud-providers.md
Local models (Ollama, LM Studio)local-models.md
MCP server configurationmcp-servers.md
Subprocess integration patternsintegration-patterns.md

Vertex AI Setup

See vertex-ai-setup.md for Vertex AI configuration including environment variables and service account setup.

Subprocess Invocation

Basic Pattern

import subprocess

result = subprocess.run(
    ["opencode", "run", "--model", "google/gemini-2.5-pro", prompt],
    capture_output=True,
    text=True,
    timeout=600
)
output = result.stdout

Key Considerations

  1. Stagger parallel calls - Add 5-10 second delays between parallel invocations to avoid cache race conditions
  2. Implement fallback - Consider Claude CLI as fallback if OpenCode fails
  3. Health check - Use opencode --version to verify availability
  4. Timeout handling - Set appropriate timeouts (default 600s for long generations)

See integration-patterns.md for complete patterns.

Limitations vs Claude CLI

FeatureOpenCodeClaude CLI
Headless moderun subcommand-p flag with stdin
Hooks/settingsNot supported--settings flag
Directory accessNot supported--add-dir flag
Tool pre-approvalNot supported--allowedTools flag
Prompt inputPositional argumentStdin or -p

Environment Variables

VariablePurpose
OPENCODE_CONFIGCustom config file path
GOOGLE_CLOUD_PROJECTGCP project for Vertex AI
GOOGLE_APPLICATION_CREDENTIALSService account JSON path
VERTEX_LOCATIONVertex AI region

Verify Setup

Complete this checklist to verify a working installation:

  1. Check version - Confirm CLI is installed:
    opencode --version
    
  2. Test default model - Verify basic connectivity:
    opencode run --model google/gemini-2.5-pro "Say hello"
    
  3. Check configuration - Review active config:
    cat ~/.config/opencode/opencode.json
    
  4. Verify MCP servers (if configured) - Test MCP connectivity by running a command that uses MCP tools

Best Practices

  1. Use project-level config - Create opencode.json for project-specific settings
  2. Prefer environment variables - Use {env:VAR_NAME} syntax in config for secrets
  3. Implement retries - Network failures are common; implement retry logic
  4. Log output - Capture both stdout and stderr for debugging
  5. Stagger parallel calls - Prevent cache race conditions with delays