architecture-design
Use when designing system architecture, making high-level technical decisions, or planning major system changes. Focuses on structure, patterns, and long-term strategy.
$ Installer
git clone https://github.com/TheBushidoCollective/han /tmp/han && cp -r /tmp/han/core/skills/architecture-design ~/.claude/skills/han// tip: Run this command in your terminal to install the skill
name: architecture-design description: Use when designing system architecture, making high-level technical decisions, or planning major system changes. Focuses on structure, patterns, and long-term strategy. allowed-tools:
- Read
- Grep
- Glob
- Bash
Architecture Design Skill
Design system architecture and make strategic technical decisions.
Core Principle
Good architecture enables change while maintaining simplicity.
Architecture vs Planning
Architecture Design (this skill):
- Strategic: "How should the system be structured?"
- Component interactions and boundaries
- Technology and pattern choices
- Long-term implications
- System-level decisions
Technical Planning (technical-planning skill):
- Tactical: "How do I implement feature X?"
- Specific implementation tasks
- Execution details
- Short-term focus
Use architecture when:
- Designing new systems or subsystems
- Major refactors affecting multiple components
- Technology selection decisions
- Defining system boundaries and interfaces
- Making decisions with long-term impact
Use planning when:
- Implementing within existing architecture
- Breaking down specific features
- Task sequencing and execution
Architecture Process
1. Understand Context
Business context:
- What problem are we solving?
- Who are the users?
- What are the business goals?
- What are the success metrics?
Technical context:
- What exists today?
- What constraints exist?
- What must we integrate with?
- What scale must we support?
Team context:
- What's our expertise?
- What can we maintain?
- What's our velocity?
2. Gather Requirements
Functional requirements:
- What must the system do?
- What are the features?
- What are the user scenarios?
Non-functional requirements:
- Performance: Response time, throughput
- Scalability: Expected load, growth
- Availability: Uptime requirements
- Security: Compliance, data protection
- Maintainability: Team size, skills
- Cost: Budget constraints
Example:
## Requirements
### Functional
- Users can search products by name/category
- Users can add items to cart
- Users can checkout and pay
### Non-Functional
- Search response time < 200ms (p95)
- Support 10,000 concurrent users
- 99.9% uptime
- PCI DSS compliant for payments
- Team of 5 developers can maintain
3. Identify Constraints
Technical constraints:
- Must use existing authentication system
- Must integrate with legacy inventory system
- Database must be PostgreSQL (existing infrastructure)
Business constraints:
- Must launch in 3 months
- Budget of $50k for infrastructure
- Must support EU data residency
Team constraints:
- Team experienced in Python, less in Go
- No DevOps specialist on team
- Remote team across timezones
4. Consider Alternatives
Never design in a vacuum - consider options:
Example: Data storage choice
Option 1: PostgreSQL
- Pros: Team knows it, ACID guarantees, rich query support
- Cons: Vertical scaling limits, setup complexity
Option 2: MongoDB
- Pros: Flexible schema, horizontal scaling
- Cons: Team unfamiliar, eventual consistency
Option 3: DynamoDB
- Pros: Fully managed, auto-scaling
- Cons: Vendor lock-in, query limitations, cost at scale
Decision: PostgreSQL
- Team expertise outweighs scaling concerns
- Can re-evaluate if scale becomes issue
- Faster initial development
5. Design System Structure
Define components and their responsibilities:
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Client Apps โ
โ (Web, iOS, Android) โ
โโโโโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ
โผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ API Gateway / Load Balancer โ
โโโโโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ
โโโโโโโโโโดโโโโโโโโโ
โผ โผ
โโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโ
โ Auth โ โ Core API โ
โ Service โ โ Service โ
โโโโโโโโโฌโโโโโโโโ โโโโโโโโโฌโโโโโโโโ
โ โ
โ โโโโโโโโโโดโโโโโโโโโ
โ โผ โผ
โ โโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโ
โ โ PostgreSQL โ โ Redis โ
โ โ (Primary) โ โ (Cache) โ
โ โโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโ
โ
โผ
โโโโโโโโโโโโโโโโโ
โ User DB โ
โโโโโโโโโโโโโโโโโ
Component descriptions:
## Components
### API Gateway
**Responsibility:** Route requests, rate limiting, authentication
**Technology:** Nginx
**Dependencies:** Auth Service, Core API Service
**Scale:** 2-3 instances behind load balancer
### Auth Service
**Responsibility:** User authentication, session management, JWT issuing
**Technology:** Python (Flask), PostgreSQL
**API:** REST
**Scale:** Stateless, 2-N instances
### Core API Service
**Responsibility:** Business logic, data access, external integrations
**Technology:** Python (FastAPI), PostgreSQL, Redis
**API:** REST
**Scale:** Stateless, 2-N instances
### PostgreSQL
**Responsibility:** Primary data store
**Scale:** Primary with read replica
### Redis
**Responsibility:** Session storage, caching, rate limiting
**Scale:** Cluster mode (3 nodes)
6. Define Interfaces
API contracts:
## API Design
### POST /api/auth/login
**Purpose:** Authenticate user, issue JWT
**Request:**
```json
{
"email": "user@example.com",
"password": "secure_password"
}
Response (200):
{
"token": "eyJ...",
"user": {
"id": "123",
"email": "user@example.com",
"name": "John Doe"
}
}
Errors:
- 400: Invalid request
- 401: Invalid credentials
- 429: Rate limit exceeded
### 7. Plan for Failure
**What can go wrong?**
- Database unavailable
- External API down
- Network partition
- High load
- Data corruption
**Mitigation strategies:**
- Retry with exponential backoff
- Circuit breakers for external services
- Graceful degradation
- Health checks and monitoring
- Database backups
**Example:**
```markdown
## Failure Scenarios
### Database Unavailable
**Impact:** Cannot read/write data
**Mitigation:**
- Read replica failover (automated)
- Circuit breaker after 3 failures
- Cache serves stale data for 5 minutes
- User sees degraded experience message
**Recovery:** Manual failover to replica, fix primary
### External Payment API Down
**Impact:** Cannot process payments
**Mitigation:**
- Retry 3 times with exponential backoff
- Queue payments for later processing
- User notified of delay
- Alert on-call engineer
**Recovery:** Process queued payments once API recovers
8. Document Decisions
Architecture Decision Record (ADR):
# ADR-001: Use PostgreSQL for Primary Database
**Status:** Accepted
**Date:** 2024-01-15
**Deciders:** Tech Lead, Backend Team
## Context
We need to choose a primary database for user data, products, and orders.
Requirements:
- Strong consistency (ACID)
- Complex queries (joins, aggregations)
- < 200ms query time for 90% of queries
- Support 100k users initially
## Decision
Use PostgreSQL as primary database.
## Alternatives Considered
### MongoDB
- **Pros:** Flexible schema, horizontal scaling
- **Cons:** Team unfamiliar, eventual consistency issues
- **Why not:** Team expertise more valuable than flexibility
### DynamoDB
- **Pros:** Managed service, auto-scaling
- **Cons:** Vendor lock-in, limited query capability, cost
- **Why not:** Query limitations would hurt development velocity
### MySQL
- **Pros:** Similar to PostgreSQL, team knows it
- **Cons:** Less feature-rich than PostgreSQL
- **Why not:** PostgreSQL offers JSON support, better full-text search
## Consequences
**Positive:**
- Team can be productive immediately
- Strong consistency guarantees
- Rich query capabilities
- JSON support for flexible data
**Negative:**
- Vertical scaling limits (mitigated: can add read replicas)
- More complex than managed services (mitigated: use RDS)
- Higher operational overhead
**Trade-offs:**
- Chose familiarity over horizontal scaling
- Chose rich queries over eventual consistency
- Can re-evaluate if scale requirements change
## Validation
- Team confirmed expertise in PostgreSQL
- Load testing shows meets performance requirements
- Cost analysis shows acceptable for first year
Architecture Principles
1. Simplicity
Start simple, add complexity only when needed.
โ BAD: Microservices from day 1 with 20 services
โ
GOOD: Start with monolith, split when needed
Apply YAGNI: You Aren't Gonna Need It
- Don't build for hypothetical future
- Add when actually needed
- Simpler is easier to maintain
2. Separation of Concerns
Each component has one clear responsibility.
โ
GOOD:
- Auth Service: Authentication only
- User Service: User profile management
- Order Service: Order processing
โ BAD:
- God Service: Does everything
Apply SOLID principles:
- Single Responsibility
- Open/Closed
- Liskov Substitution
- Interface Segregation
- Dependency Inversion
3. Loose Coupling
Components depend on interfaces, not implementations.
// โ BAD: Tight coupling
class OrderService {
constructor(private db: PostgresDatabase) {}
}
// โ
GOOD: Loose coupling
class OrderService {
constructor(private db: Database) {} // Interface
}
Benefits:
- Easier to test (mock interface)
- Easier to swap implementations
- Components can evolve independently
4. High Cohesion
Related functionality stays together.
โ
GOOD:
user/
- create_user.ts
- update_user.ts
- delete_user.ts
- user_repository.ts
โ BAD:
create/
- create_user.ts
- create_order.ts
update/
- update_user.ts
- update_order.ts
5. Explicit Over Implicit
Make dependencies and contracts clear.
// โ BAD: Implicit dependency
function processOrder(orderId: string) {
const db = global.database // Where does this come from?
// ...
}
// โ
GOOD: Explicit dependency
function processOrder(
orderId: string,
db: Database,
logger: Logger
) {
// Dependencies are clear
}
6. Fail Fast
Detect and report errors early.
// โ BAD: Silent failure
function divide(a: number, b: number) {
if (b === 0) return 0 // Wrong!
return a / b
}
// โ
GOOD: Fail fast
function divide(a: number, b: number) {
if (b === 0) {
throw new Error('Division by zero')
}
return a / b
}
7. Design for Testability
Make it easy to test.
// โ BAD: Hard to test
class OrderService {
processOrder(orderId: string) {
const db = new PostgresDatabase() // Can't mock
const api = new PaymentAPI() // Can't mock
// ...
}
}
// โ
GOOD: Easy to test
class OrderService {
constructor(
private db: Database, // Can inject mock
private api: PaymentAPI // Can inject mock
) {}
processOrder(orderId: string) {
// ...
}
}
Common Architecture Patterns
Layered Architecture
โโโโโโโโโโโโโโโโโโโโโโโ
โ Presentation โ (UI, API controllers)
โโโโโโโโโโโโโโโโโโโโโโโค
โ Business Logic โ (Domain, services)
โโโโโโโโโโโโโโโโโโโโโโโค
โ Data Access โ (Repositories, ORMs)
โโโโโโโโโโโโโโโโโโโโโโโค
โ Database โ (Storage)
โโโโโโโโโโโโโโโโโโโโโโโ
When to use: Simple to moderate complexity
Hexagonal Architecture (Ports & Adapters)
โโโโโโโโโโโโโโโโโโโโโโโโโ
โ External Systems โ
โ (UI, DB, APIs) โ
โโโโโโโโโโโโฌโโโโโโโโโโโโโ
โ
โโโโโโโโโโโโผโโโโโโโโโโโโโ
โ Adapters โ (Implementation)
โ (REST, PostgreSQL) โ
โโโโโโโโโโโโฌโโโโโโโโโโโโโ
โ
โโโโโโโโโโโโผโโโโโโโโโโโโโ
โ Ports โ (Interfaces)
โ (IUserRepo, IAuth) โ
โโโโโโโโโโโโฌโโโโโโโโโโโโโ
โ
โโโโโโโโโโโโผโโโโโโโโโโโโโ
โ Core Domain โ (Business logic)
โ (Pure logic) โ
โโโโโโโโโโโโโโโโโโโโโโโโโ
When to use: Want to isolate business logic, multiple frontends
Microservices
โโโโโโโโโโโ โโโโโโโโโโโ โโโโโโโโโโโ
โ User โ โ Order โ โ Payment โ
โ Service โ โ Service โ โ Service โ
โโโโโโฌโโโโโ โโโโโโฌโโโโโ โโโโโโฌโโโโโ
โ โ โ
โโโโโโโโโโโโโโดโโโโโโโโโโโโโ
โ
โโโโโโโโโผโโโโโโโโโ
โ Message Bus โ
โ (Event-driven)โ
โโโโโโโโโโโโโโโโโโ
When to use: Large team, need independent deploy, clear boundaries
Avoid when: Small team, unclear boundaries, early stage
Event-Driven Architecture
โโโโโโโโโโโ โโโโโโโโโโโโโโโ โโโโโโโโโโโ
โProducer โโโโโโโโถโ Event Bus โโโโโโโโถโConsumer โ
โโโโโโโโโโโ โโโโโโโโโโโโโโโ โโโโโโโโโโโ
When to use: Async processing, decoupled systems, audit trails
Anti-Patterns
โ Premature Optimization
Don't optimize for scale you don't have.
BAD: Build microservices for 100 users
GOOD: Start with monolith, split when needed
โ Resume-Driven Architecture
Don't choose technology to pad resume.
BAD: "I want to learn Kubernetes, let's use it"
GOOD: "Kubernetes fits our scale needs"
โ Distributed Monolith
Microservices that are tightly coupled.
BAD: Service A can't deploy without Service B
GOOD: Services are independently deployable
โ Big Ball of Mud
No structure, everything depends on everything.
BAD: Any code can call any other code
GOOD: Clear layers and boundaries
โ Analysis Paralysis
Over-analyzing, never shipping.
BAD: Spend 6 months on perfect architecture
GOOD: Design enough to start, iterate
Architecture Review Checklist
- Business goals clearly understood
- Functional requirements documented
- Non-functional requirements defined
- Constraints identified
- Multiple alternatives considered
- Trade-offs explicitly stated
- Component responsibilities clear
- Interfaces well-defined
- Failure scenarios planned for
- Security considered
- Scalability addressed
- Testability designed in
- Decisions documented (ADRs)
- Team can implement and maintain
Integration with Other Skills
- Apply solid-principles - Guide component design
- Apply simplicity-principles - KISS, YAGNI
- Apply orthogonality-principle - Independent components
- Apply structural-design-principles - Composition patterns
- Use technical-planning - For implementation after design
Remember
- Simplicity first - Start simple, add complexity when needed
- Document decisions - Future you will thank you
- Consider alternatives - Never the first idea only
- State trade-offs - Every decision has consequences
- Design for change - Systems evolve
The best architecture is the one that's simple enough to ship and flexible enough to evolve.
Repository
