frappe-report-generator
Generate custom reports, query reports, and script reports for Frappe applications. Use when creating data analysis and reporting features.
$ Installer
git clone https://github.com/Venkateshvenki404224/frappe-apps-manager /tmp/frappe-apps-manager && cp -r /tmp/frappe-apps-manager/frappe-apps-manager/skills/frappe-report-generator ~/.claude/skills/frappe-apps-manager// tip: Run this command in your terminal to install the skill
name: frappe-report-generator description: Generate custom reports, query reports, and script reports for Frappe applications. Use when creating data analysis and reporting features.
Frappe Report Generator Skill
Create custom reports for data analysis, dashboards, and business intelligence in Frappe.
When to Use This Skill
Claude should invoke this skill when:
- User wants to create custom reports
- User needs data analysis or aggregation
- User asks about query reports or script reports
- User wants to build dashboards
- User needs help with report formatting or filters
Capabilities
1. Report Types
Query Report (SQL-based):
- Fast performance for large datasets
- Direct SQL queries
- Complex joins and aggregations
- Limited formatting options
Script Report (Python-based):
- Full Python flexibility
- Complex business logic
- Dynamic columns and formatting
- Access to Frappe ORM
Report Builder (No-code):
- User-configurable
- No coding required
- Basic aggregations
- Simple use cases
2. Query Report Structure
Basic Query Report JSON:
{
"name": "Sales Analysis",
"report_name": "Sales Analysis",
"ref_doctype": "Sales Order",
"report_type": "Query Report",
"is_standard": "Yes",
"module": "Selling",
"disabled": 0,
"query": "",
"filters": [],
"columns": []
}
Python File (sales_analysis.py):
import frappe
from frappe import _
def execute(filters=None):
columns = get_columns()
data = get_data(filters)
return columns, data
def get_columns():
return [
{
"fieldname": "sales_order",
"label": _("Sales Order"),
"fieldtype": "Link",
"options": "Sales Order",
"width": 150
},
{
"fieldname": "customer",
"label": _("Customer"),
"fieldtype": "Link",
"options": "Customer",
"width": 150
},
{
"fieldname": "posting_date",
"label": _("Date"),
"fieldtype": "Date",
"width": 100
},
{
"fieldname": "grand_total",
"label": _("Grand Total"),
"fieldtype": "Currency",
"width": 120
},
{
"fieldname": "status",
"label": _("Status"),
"fieldtype": "Data",
"width": 100
}
]
def get_data(filters):
conditions = get_conditions(filters)
query = f"""
SELECT
so.name as sales_order,
so.customer,
so.posting_date,
so.grand_total,
so.status
FROM
`tabSales Order` so
WHERE
so.docstatus = 1
{conditions}
ORDER BY
so.posting_date DESC
"""
return frappe.db.sql(query, filters, as_dict=1)
def get_conditions(filters):
conditions = []
if filters.get("customer"):
conditions.append("so.customer = %(customer)s")
if filters.get("from_date"):
conditions.append("so.posting_date >= %(from_date)s")
if filters.get("to_date"):
conditions.append("so.posting_date <= %(to_date)s")
if filters.get("status"):
conditions.append("so.status = %(status)s")
return " AND " + " AND ".join(conditions) if conditions else ""
3. Script Report Structure
Advanced Script Report:
import frappe
from frappe import _
from frappe.utils import flt, getdate
def execute(filters=None):
columns = get_columns()
data = get_data(filters)
chart = get_chart_data(data)
report_summary = get_report_summary(data)
return columns, data, None, chart, report_summary
def get_columns():
return [
{
"fieldname": "customer",
"label": _("Customer"),
"fieldtype": "Link",
"options": "Customer",
"width": 150
},
{
"fieldname": "total_orders",
"label": _("Total Orders"),
"fieldtype": "Int",
"width": 100
},
{
"fieldname": "total_amount",
"label": _("Total Amount"),
"fieldtype": "Currency",
"width": 120
},
{
"fieldname": "avg_order_value",
"label": _("Avg Order Value"),
"fieldtype": "Currency",
"width": 120
}
]
def get_data(filters):
# Get sales orders
sales_orders = frappe.get_all(
"Sales Order",
filters={
"docstatus": 1,
"posting_date": ["between", [filters.get("from_date"), filters.get("to_date")]]
},
fields=["customer", "grand_total"]
)
# Aggregate by customer
customer_data = {}
for order in sales_orders:
customer = order.customer
if customer not in customer_data:
customer_data[customer] = {
"customer": customer,
"total_orders": 0,
"total_amount": 0
}
customer_data[customer]["total_orders"] += 1
customer_data[customer]["total_amount"] += flt(order.grand_total)
# Calculate averages
data = []
for customer, values in customer_data.items():
data.append({
"customer": customer,
"total_orders": values["total_orders"],
"total_amount": values["total_amount"],
"avg_order_value": values["total_amount"] / values["total_orders"]
})
return sorted(data, key=lambda x: x["total_amount"], reverse=True)
def get_chart_data(data):
"""Generate chart for report"""
if not data:
return None
labels = [d["customer"] for d in data[:10]] # Top 10
values = [d["total_amount"] for d in data[:10]]
return {
"data": {
"labels": labels,
"datasets": [
{
"name": "Total Sales",
"values": values
}
]
},
"type": "bar",
"colors": ["#7cd6fd"]
}
def get_report_summary(data):
"""Generate summary cards"""
if not data:
return []
total_customers = len(data)
total_revenue = sum(d["total_amount"] for d in data)
total_orders = sum(d["total_orders"] for d in data)
avg_order_value = total_revenue / total_orders if total_orders else 0
return [
{
"value": total_customers,
"label": "Total Customers",
"datatype": "Int"
},
{
"value": total_revenue,
"label": "Total Revenue",
"datatype": "Currency"
},
{
"value": total_orders,
"label": "Total Orders",
"datatype": "Int"
},
{
"value": avg_order_value,
"label": "Avg Order Value",
"datatype": "Currency"
}
]
4. Report Filters
Filter Definition (JSON):
{
"filters": [
{
"fieldname": "customer",
"label": "Customer",
"fieldtype": "Link",
"options": "Customer"
},
{
"fieldname": "from_date",
"label": "From Date",
"fieldtype": "Date",
"default": "frappe.datetime.month_start()",
"reqd": 1
},
{
"fieldname": "to_date",
"label": "To Date",
"fieldtype": "Date",
"default": "frappe.datetime.month_end()",
"reqd": 1
},
{
"fieldname": "status",
"label": "Status",
"fieldtype": "Select",
"options": "\nDraft\nSubmitted\nCancelled",
"default": "Submitted"
}
]
}
5. Advanced Query Patterns
Complex Joins:
def get_data(filters):
query = """
SELECT
so.name as sales_order,
so.customer,
c.customer_group,
c.territory,
so.posting_date,
SUM(soi.amount) as total_amount,
COUNT(soi.name) as total_items
FROM
`tabSales Order` so
INNER JOIN
`tabCustomer` c ON so.customer = c.name
INNER JOIN
`tabSales Order Item` soi ON soi.parent = so.name
WHERE
so.docstatus = 1
AND so.posting_date BETWEEN %(from_date)s AND %(to_date)s
GROUP BY
so.name
ORDER BY
total_amount DESC
"""
return frappe.db.sql(query, filters, as_dict=1)
Aggregations:
def get_summary_data(filters):
query = """
SELECT
MONTH(posting_date) as month,
YEAR(posting_date) as year,
COUNT(name) as order_count,
SUM(grand_total) as total_sales,
AVG(grand_total) as avg_order_value,
MIN(grand_total) as min_order,
MAX(grand_total) as max_order
FROM
`tabSales Order`
WHERE
docstatus = 1
AND posting_date BETWEEN %(from_date)s AND %(to_date)s
GROUP BY
YEAR(posting_date), MONTH(posting_date)
ORDER BY
year DESC, month DESC
"""
return frappe.db.sql(query, filters, as_dict=1)
6. Dynamic Columns
def get_columns():
"""Generate columns dynamically based on data"""
base_columns = [
{
"fieldname": "customer",
"label": _("Customer"),
"fieldtype": "Link",
"options": "Customer",
"width": 150
}
]
# Add month columns dynamically
months = ["Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]
for month in months:
base_columns.append({
"fieldname": month.lower(),
"label": _(month),
"fieldtype": "Currency",
"width": 100
})
base_columns.append({
"fieldname": "total",
"label": _("Total"),
"fieldtype": "Currency",
"width": 120
})
return base_columns
7. Report Formatting
Conditional Formatting:
def get_data(filters):
data = # ... get data
for row in data:
# Add indicator
if row.grand_total > 100000:
row["indicator"] = "green"
elif row.grand_total > 50000:
row["indicator"] = "orange"
else:
row["indicator"] = "red"
return data
8. Export Features
Reports automatically support:
- Excel export
- PDF export
- CSV export
- Print view
9. Performance Optimization
Use Indexes:
# Ensure proper indexes exist
# ALTER TABLE `tabSales Order` ADD INDEX idx_posting_date (posting_date);
# ALTER TABLE `tabSales Order` ADD INDEX idx_customer (customer);
Limit Results:
def get_data(filters):
# Add LIMIT for large datasets
query = f"""
SELECT ...
FROM ...
WHERE ...
LIMIT 1000
"""
return frappe.db.sql(query, filters, as_dict=1)
Use Query Caching:
def get_data(filters):
cache_key = f"sales_report_{filters.get('from_date')}_{filters.get('to_date')}"
data = frappe.cache().get_value(cache_key)
if data:
return data
data = frappe.db.sql(query, filters, as_dict=1)
frappe.cache().set_value(cache_key, data, expires_in_sec=300)
return data
10. Report Permissions
Permission Query:
def get_data(filters):
# Only show data user has permission to see
if not frappe.has_permission("Sales Order", "read"):
frappe.throw(_("Not permitted"))
# Filter by user permissions
user_customers = frappe.get_list(
"Customer",
filters={"name": ["in", frappe.get_roles()]},
pluck="name"
)
if user_customers:
filters["customer"] = ["in", user_customers]
File Structure
Reports should be organized as:
apps/<app_name>/<module>/report/<report_name>/
├── __init__.py
├── <report_name>.json
├── <report_name>.py
└── <report_name>.js (optional, for client-side customization)
Best Practices
- Optimize queries - Use proper indexes and LIMIT
- Filter early - Apply filters in WHERE clause, not in Python
- Use parameterized queries - Prevent SQL injection
- Cache when possible - Cache expensive calculations
- Validate filters - Always validate user inputs
- Handle permissions - Check user permissions
- Provide defaults - Set sensible default filters
- Document reports - Add helpful descriptions
- Test with large data - Ensure performance at scale
- Use chart/summary wisely - Enhance user experience
Testing Reports
Access reports at:
http://localhost:8000/app/query-report/Sales%20Analysis
Remember: This skill is model-invoked. Claude will use it autonomously when detecting report development tasks.
Repository
