python-best-practices
Python development best practices including PEP 8 style guidelines, type hints, docstring conventions, and common patterns. Use when writing or modifying Python code.
$ Installer
git clone https://github.com/jefflester/claude-skills-supercharged /tmp/claude-skills-supercharged && cp -r /tmp/claude-skills-supercharged/.claude/skills/python-best-practices ~/.claude/skills/claude-skills-supercharged// tip: Run this command in your terminal to install the skill
name: python-best-practices description: Python development best practices including PEP 8 style guidelines, type hints, docstring conventions, and common patterns. Use when writing or modifying Python code.
Python Best Practices
Purpose
This skill provides guidance on Python development best practices to ensure code quality, maintainability, and consistency across your Python projects.
When to Use This Skill
Auto-activates when:
- Working with Python files (*.py)
- Mentions of "python", "best practices", "style guide"
- Adding type hints or docstrings
- Code refactoring in Python
Style Guidelines
PEP 8 Compliance
Follow PEP 8 style guide for Python code:
- Indentation: 4 spaces per indentation level
- Line Length: Maximum 79 characters for code, 72 for docstrings/comments
- Blank Lines: 2 blank lines between top-level definitions, 1 between methods
- Imports: Always at top of file, grouped (stdlib, third-party, local)
- Naming Conventions:
snake_casefor functions, variables, modulesPascalCasefor classesUPPER_SNAKE_CASEfor constants- Leading underscore
_namefor internal/private
Import Organization
Always organize imports in this order:
# 1. Standard library imports
import os
import sys
from pathlib import Path
# 2. Third-party imports
import requests
import numpy as np
# 3. Local application imports
from myapp.core import MyClass
from myapp.utils import helper_function
Avoid circular imports by using TYPE_CHECKING:
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from myapp.other_module import OtherClass
def my_function(obj: "OtherClass") -> None:
"""Function that uses OtherClass only for type hints."""
pass
Type Hints
Always Use Type Hints
Type hints improve code clarity and catch errors early:
def process_data(
items: list[str],
max_count: int | None = None,
verbose: bool = False
) -> dict[str, int]:
"""Process items and return counts.
Parameters
----------
items : list[str]
List of items to process
max_count : int | None, optional
Maximum items to process, by default None
verbose : bool, optional
Enable verbose output, by default False
Returns
-------
dict[str, int]
Dictionary mapping items to counts
"""
result: dict[str, int] = {}
for item in items[:max_count]:
result[item] = result.get(item, 0) + 1
if verbose:
print(f"Processed: {item}")
return result
Modern Type Syntax (Python 3.10+)
Use modern union syntax with | instead of Union:
# Good (Python 3.10+)
def get_value(key: str) -> int | None:
pass
# Avoid (old style)
from typing import Union, Optional
def get_value(key: str) -> Optional[int]:
pass
Generic Types
Use built-in generic types (Python 3.9+):
# Good (Python 3.9+)
def process_list(items: list[str]) -> dict[str, int]:
pass
# Avoid (old style)
from typing import List, Dict
def process_list(items: List[str]) -> Dict[str, int]:
pass
Docstrings
NumPy Style Docstrings
Use NumPy-style docstrings for consistency:
def calculate_statistics(
data: list[float],
include_median: bool = True
) -> dict[str, float]:
"""Calculate statistical measures for a dataset.
This function computes mean, standard deviation, and optionally
median for the provided dataset.
Parameters
----------
data : list[float]
List of numerical values to analyze
include_median : bool, optional
Whether to calculate median, by default True
Returns
-------
dict[str, float]
Dictionary containing:
- 'mean': arithmetic mean
- 'std': standard deviation
- 'median': median value (if include_median=True)
Raises
------
ValueError
If data is empty or contains non-numeric values
Examples
--------
>>> calculate_statistics([1.0, 2.0, 3.0, 4.0, 5.0])
{'mean': 3.0, 'std': 1.414, 'median': 3.0}
Notes
-----
Standard deviation uses Bessel's correction (ddof=1).
"""
if not data:
raise ValueError("Data cannot be empty")
# Implementation here
pass
Class Docstrings
class DataProcessor:
"""Process and transform data from various sources.
This class provides methods for loading, transforming, and
validating data from multiple input formats.
Parameters
----------
source_dir : Path
Directory containing source data files
cache_enabled : bool, optional
Enable result caching, by default True
Attributes
----------
source_dir : Path
Directory path for source files
cache : dict[str, Any]
Cache for processed results
Examples
--------
>>> processor = DataProcessor(Path("/data"))
>>> results = processor.process_files()
"""
def __init__(self, source_dir: Path, cache_enabled: bool = True):
"""Initialize the DataProcessor."""
self.source_dir = source_dir
self.cache: dict[str, Any] = {} if cache_enabled else None
Error Handling
Specific Exception Types
Use specific exception types, not bare except:
# Good
try:
with open(file_path) as f:
data = f.read()
except FileNotFoundError:
logger.error(f"File not found: {file_path}")
raise
except PermissionError:
logger.error(f"Permission denied: {file_path}")
raise
# Avoid
try:
with open(file_path) as f:
data = f.read()
except: # Too broad!
pass
Context Managers
Always use context managers for resources:
# Good
with open(file_path) as f:
content = f.read()
# Avoid
f = open(file_path)
content = f.read()
f.close() # Easy to forget!
Custom Exceptions
Define custom exceptions for domain-specific errors:
class ValidationError(Exception):
"""Raised when data validation fails."""
pass
class DataProcessingError(Exception):
"""Raised when data processing encounters an error."""
def __init__(self, message: str, item_id: str):
super().__init__(message)
self.item_id = item_id
Common Patterns
Dataclasses for Data Structures
Use dataclasses for simple data containers:
from dataclasses import dataclass, field
@dataclass
class User:
"""User profile information."""
username: str
email: str
age: int
tags: list[str] = field(default_factory=list)
is_active: bool = True
def __post_init__(self):
"""Validate fields after initialization."""
if self.age < 0:
raise ValueError("Age cannot be negative")
Enums for Fixed Sets
Use Enum for fixed sets of values:
from enum import Enum, auto
class Status(Enum):
"""Processing status values."""
PENDING = auto()
PROCESSING = auto()
COMPLETED = auto()
FAILED = auto()
# Usage
current_status = Status.PENDING
if current_status == Status.COMPLETED:
print("Done!")
Pathlib for File Operations
Use pathlib.Path instead of os.path:
from pathlib import Path
# Good
data_dir = Path("/data")
file_path = data_dir / "input.txt"
if file_path.exists():
content = file_path.read_text()
# Avoid
import os
data_dir = "/data"
file_path = os.path.join(data_dir, "input.txt")
if os.path.exists(file_path):
with open(file_path) as f:
content = f.read()
List Comprehensions
Use comprehensions for clarity and performance:
# Good
squared = [x**2 for x in range(10) if x % 2 == 0]
# Avoid
squared = []
for x in range(10):
if x % 2 == 0:
squared.append(x**2)
Code Organization
Module Structure
Organize modules with clear sections:
"""Module for data processing utilities.
This module provides functions for loading, transforming, and
validating data from various sources.
"""
# Standard library imports
import os
import sys
from pathlib import Path
# Third-party imports
import requests
import pandas as pd
# Local imports
from myapp.core import BaseProcessor
from myapp.utils import validate_input
# Constants
MAX_RETRIES = 3
DEFAULT_TIMEOUT = 30
# Exceptions
class ProcessingError(Exception):
"""Raised when processing fails."""
pass
# Functions
def load_data(source: str) -> pd.DataFrame:
"""Load data from source."""
pass
# Classes
class DataProcessor(BaseProcessor):
"""Process and validate data."""
pass
# Module initialization
if __name__ == "__main__":
# CLI entry point
main()
Avoid Magic Numbers
Use named constants instead of magic numbers:
# Good
MAX_RETRIES = 3
TIMEOUT_SECONDS = 30
def fetch_data(url: str) -> dict:
for attempt in range(MAX_RETRIES):
response = requests.get(url, timeout=TIMEOUT_SECONDS)
if response.status_code == 200:
return response.json()
# Avoid
def fetch_data(url: str) -> dict:
for attempt in range(3): # What is 3?
response = requests.get(url, timeout=30) # Why 30?
if response.status_code == 200:
return response.json()
Testing
Use pytest for Testing
import pytest
from myapp.processor import DataProcessor
def test_process_valid_data():
"""Test processing with valid input."""
processor = DataProcessor()
result = processor.process([1, 2, 3])
assert result == [2, 4, 6]
def test_process_empty_data():
"""Test processing with empty input."""
processor = DataProcessor()
with pytest.raises(ValueError):
processor.process([])
@pytest.fixture
def sample_data():
"""Provide sample data for tests."""
return [1, 2, 3, 4, 5]
def test_with_fixture(sample_data):
"""Test using fixture."""
processor = DataProcessor()
result = processor.process(sample_data)
assert len(result) == len(sample_data)
Key Takeaways
- Follow PEP 8 style guidelines consistently
- Always use type hints for function signatures
- Write NumPy-style docstrings for all public functions/classes
- Use specific exception types, not bare
except - Prefer
pathlib.Pathoveros.path - Use dataclasses and enums for structured data
- Organize imports: stdlib → third-party → local
- Avoid magic numbers, use named constants
- Write tests using pytest
- Use modern Python syntax (3.9+)
Repository
