databases

MongoDB and PostgreSQL database administration. Databases: MongoDB (document store, aggregation, Atlas), PostgreSQL (relational, SQL, psql). Capabilities: schema design, query optimization, indexing, migrations, replication, sharding, backup/restore, user management, performance analysis. Actions: design, query, optimize, migrate, backup, restore, index, shard databases. Keywords: MongoDB, PostgreSQL, SQL, NoSQL, BSON, aggregation pipeline, Atlas, psql, pgAdmin, schema design, index, query optimization, EXPLAIN, replication, sharding, backup, restore, migration, ORM, Prisma, Mongoose, connection pooling, transactions, ACID. Use when: designing database schemas, writing complex queries, optimizing query performance, creating indexes, performing migrations, setting up replication, implementing backup strategies, managing database permissions, troubleshooting slow queries.

$ Installer

git clone https://github.com/samhvw8/dotfiles /tmp/dotfiles && cp -r /tmp/dotfiles/dot_claude/skills/databases ~/.claude/skills/dotfiles

// tip: Run this command in your terminal to install the skill


name: databases description: "MongoDB and PostgreSQL database administration. Databases: MongoDB (document store, aggregation, Atlas), PostgreSQL (relational, SQL, psql). Capabilities: schema design, query optimization, indexing, migrations, replication, sharding, backup/restore, user management, performance analysis. Actions: design, query, optimize, migrate, backup, restore, index, shard databases. Keywords: MongoDB, PostgreSQL, SQL, NoSQL, BSON, aggregation pipeline, Atlas, psql, pgAdmin, schema design, index, query optimization, EXPLAIN, replication, sharding, backup, restore, migration, ORM, Prisma, Mongoose, connection pooling, transactions, ACID. Use when: designing database schemas, writing complex queries, optimizing query performance, creating indexes, performing migrations, setting up replication, implementing backup strategies, managing database permissions, troubleshooting slow queries." license: MIT

Databases Skill

Unified guide for working with MongoDB (document-oriented) and PostgreSQL (relational) databases. Choose the right database for your use case and master both systems.

When to Use This Skill

Use when:

  • Designing database schemas and data models
  • Writing queries (SQL or MongoDB query language)
  • Building aggregation pipelines or complex joins
  • Optimizing indexes and query performance
  • Implementing database migrations
  • Setting up replication, sharding, or clustering
  • Configuring backups and disaster recovery
  • Managing database users and permissions
  • Analyzing slow queries and performance issues
  • Administering production database deployments

Database Selection Guide

Choose MongoDB When:

  • Schema flexibility: frequent structure changes, heterogeneous data
  • Document-centric: natural JSON/BSON data model
  • Horizontal scaling: need to shard across multiple servers
  • High write throughput: IoT, logging, real-time analytics
  • Nested/hierarchical data: embedded documents preferred
  • Rapid prototyping: schema evolution without migrations

Best for: Content management, catalogs, IoT time series, real-time analytics, mobile apps, user profiles

Choose PostgreSQL When:

  • Strong consistency: ACID transactions critical
  • Complex relationships: many-to-many joins, referential integrity
  • SQL requirement: team expertise, reporting tools, BI systems
  • Data integrity: strict schema validation, constraints
  • Mature ecosystem: extensive tooling, extensions
  • Complex queries: window functions, CTEs, analytical workloads

Best for: Financial systems, e-commerce transactions, ERP, CRM, data warehousing, analytics

Both Support:

  • JSON/JSONB storage and querying
  • Full-text search capabilities
  • Geospatial queries and indexing
  • Replication and high availability
  • ACID transactions (MongoDB 4.0+)
  • Strong security features

Quick Start

MongoDB Setup

# Atlas (Cloud) - Recommended
# 1. Sign up at mongodb.com/atlas
# 2. Create M0 free cluster
# 3. Get connection string

# Connection
mongodb+srv://user:pass@cluster.mongodb.net/db

# Shell
mongosh "mongodb+srv://cluster.mongodb.net/mydb"

# Basic operations
db.users.insertOne({ name: "Alice", age: 30 })
db.users.find({ age: { $gte: 18 } })
db.users.updateOne({ name: "Alice" }, { $set: { age: 31 } })
db.users.deleteOne({ name: "Alice" })

PostgreSQL Setup

# Ubuntu/Debian
sudo apt-get install postgresql postgresql-contrib

# Start service
sudo systemctl start postgresql

# Connect
psql -U postgres -d mydb

# Basic operations
CREATE TABLE users (id SERIAL PRIMARY KEY, name TEXT, age INT);
INSERT INTO users (name, age) VALUES ('Alice', 30);
SELECT * FROM users WHERE age >= 18;
UPDATE users SET age = 31 WHERE name = 'Alice';
DELETE FROM users WHERE name = 'Alice';

Common Operations

Create/Insert

// MongoDB
db.users.insertOne({ name: "Bob", email: "bob@example.com" })
db.users.insertMany([{ name: "Alice" }, { name: "Charlie" }])
-- PostgreSQL
INSERT INTO users (name, email) VALUES ('Bob', 'bob@example.com');
INSERT INTO users (name, email) VALUES ('Alice', NULL), ('Charlie', NULL);

Read/Query

// MongoDB
db.users.find({ age: { $gte: 18 } })
db.users.findOne({ email: "bob@example.com" })
-- PostgreSQL
SELECT * FROM users WHERE age >= 18;
SELECT * FROM users WHERE email = 'bob@example.com' LIMIT 1;

Update

// MongoDB
db.users.updateOne({ name: "Bob" }, { $set: { age: 25 } })
db.users.updateMany({ status: "pending" }, { $set: { status: "active" } })
-- PostgreSQL
UPDATE users SET age = 25 WHERE name = 'Bob';
UPDATE users SET status = 'active' WHERE status = 'pending';

Delete

// MongoDB
db.users.deleteOne({ name: "Bob" })
db.users.deleteMany({ status: "deleted" })
-- PostgreSQL
DELETE FROM users WHERE name = 'Bob';
DELETE FROM users WHERE status = 'deleted';

Indexing

// MongoDB
db.users.createIndex({ email: 1 })
db.users.createIndex({ status: 1, createdAt: -1 })
-- PostgreSQL
CREATE INDEX idx_users_email ON users(email);
CREATE INDEX idx_users_status_created ON users(status, created_at DESC);

Reference Navigation

MongoDB References

PostgreSQL References

Python Utilities

Database utility scripts in scripts/:

  • db_migrate.py - Generate and apply migrations for both databases
  • db_backup.py - Backup and restore MongoDB and PostgreSQL
  • db_performance_check.py - Analyze slow queries and recommend indexes
# Generate migration
python scripts/db_migrate.py --db mongodb --generate "add_user_index"

# Run backup
python scripts/db_backup.py --db postgres --output /backups/

# Check performance
python scripts/db_performance_check.py --db mongodb --threshold 100ms

Key Differences Summary

FeatureMongoDBPostgreSQL
Data ModelDocument (JSON/BSON)Relational (Tables/Rows)
SchemaFlexible, dynamicStrict, predefined
Query LanguageMongoDB Query LanguageSQL
Joins$lookup (limited)Native, optimized
TransactionsMulti-document (4.0+)Native ACID
ScalingHorizontal (sharding)Vertical (primary), Horizontal (extensions)
IndexesSingle, compound, text, geo, etcB-tree, hash, GiST, GIN, etc

Best Practices

MongoDB:

  • Use embedded documents for 1-to-few relationships
  • Reference documents for 1-to-many or many-to-many
  • Index frequently queried fields
  • Use aggregation pipeline for complex transformations
  • Enable authentication and TLS in production
  • Use Atlas for managed hosting

PostgreSQL:

  • Normalize schema to 3NF, denormalize for performance
  • Use foreign keys for referential integrity
  • Index foreign keys and frequently filtered columns
  • Use EXPLAIN ANALYZE to optimize queries
  • Regular VACUUM and ANALYZE maintenance
  • Connection pooling (pgBouncer) for web apps

Resources