claude-agent-sdk
Use when working with Anthropic Claude Agent SDK. Provides architecture guidance, implementation patterns, best practices, and common pitfalls.
$ Installer
git clone https://github.com/sammcj/agentic-coding /tmp/agentic-coding && cp -r /tmp/agentic-coding/Claude/skills/claude-agent-sdk ~/.claude/skills/agentic-coding// tip: Run this command in your terminal to install the skill
name: claude-agent-sdk description: Use when working with Anthropic Claude Agent SDK. Provides architecture guidance, implementation patterns, best practices, and common pitfalls.
Claude Agent SDK
Overview
The Claude Agent SDK enables building autonomous AI agents with Claude through a feedback loop architecture. Available for Python (3.10+) and TypeScript (Node 18+).
Repository:
- Python: https://github.com/anthropics/claude-agent-sdk-python
- TypeScript: https://github.com/anthropics/claude-agent-sdk-typescript
Documentation: https://platform.claude.com/docs/en/agent-sdk/overview
Installation
# Python
pip install claude-agent-sdk
# TypeScript
npm install @anthropic-ai/agent-sdk
Core Architecture: Feedback Loop Pattern
Every agent follows this cycle:
- Gather Context â filesystem navigation, subagents, tools
- Take Action â tools, bash, code generation, MCP
- Verify Work â rules-based, visual, LLM-as-judge
- Repeat â iterate until completion
This pattern applies whether you're building a simple script or a complex multi-agent system.
Execution Mechanisms (Priority Order)
Choose mechanisms based on task requirements:
- Custom Tools â Primary workflows (appear prominently in context)
- Bash â Flexible one-off operations
- Code Generation â Complex, reusable outputs (prefer TypeScript for linting feedback)
- MCP â Pre-built external integrations (Slack, GitHub, databases)
Rule: Use tools for repeatable operations, bash for exploration, code generation when you need structured output that can be validated.
Quick Start Patterns
Python: Basic Query
from claude_agent_sdk import query
result = await query(
model="claude-sonnet-4-5",
system_prompt="You are a helpful coding assistant.",
user_message="List files in current directory",
working_dir=".",
)
print(result.final_message)
TypeScript: Session Management
import { ClaudeSdkClient } from '@anthropic-ai/agent-sdk';
const client = new ClaudeSdkClient({ apiKey: process.env.ANTHROPIC_API_KEY });
const result = await client.query({
model: 'claude-sonnet-4-5',
systemPrompt: 'You are a helpful coding assistant.',
userMessage: 'List files in current directory',
workingDir: '.',
});
console.log(result.finalMessage);
Key Components
1. Custom Tools (SDK MCP Servers)
In-process tools with no subprocess overhead. Primary building block for agents.
Python:
from claude_agent_sdk.mcp import tool, create_sdk_mcp_server
@tool(
name="calculator",
description="Perform calculations",
input_schema={"expression": str}
)
async def calculator(args):
result = eval(args["expression"]) # Use safe eval in production
return {"content": [{"type": "text", "text": str(result)}]}
server = create_sdk_mcp_server(name="math", tools=[calculator])
TypeScript:
import { createSdkMcpServer, tool } from '@anthropic-ai/agent-sdk';
import { z } from 'zod';
const calculator = tool({
name: 'calculator',
description: 'Perform calculations',
inputSchema: z.object({ expression: z.string() }),
async execute({ expression }) {
const result = eval(expression); // Use safe eval in production
return { content: [{ type: 'text', text: String(result) }] };
},
});
const server = createSdkMcpServer({ name: 'math', tools: [calculator] });
Benefits over external MCP: Better performance, easier debugging, shared memory space, no IPC overhead.
2. Hooks (Lifecycle Callbacks)
Intercept and modify agent behaviour at specific points.
Available hooks:
PreToolUseâ Validate/modify/deny tool calls before executionPostToolUseâ Process/log/modify tool resultsStopâ Handle completion events
Python validation example:
async def validate_command(input_data, tool_use_id, context):
if "rm -rf" in input_data["tool_input"].get("command", ""):
return {
"hookSpecificOutput": {
"permissionDecision": "deny",
"permissionDecisionReason": "Dangerous command blocked"
}
}
TypeScript logging example:
const loggingHook = {
matcher: (input) => input.toolName === 'bash',
async handler(input, toolUseId, context) {
console.log(`Executing: ${input.toolInput.command}`);
}
};
3. Permission System
Four modes with progressively less restriction:
defaultâ Prompt for each tool useplanâ Agent can read/explore freely, prompts for modificationsacceptEditsâ Auto-approve file edits, prompt for bash/destructive opsbypassPermissionsâ Fully autonomous (use carefully)
Dynamic control with canUseTool:
async def permission_callback(tool_name, tool_input, context):
if tool_name == "bash" and "git push" in tool_input.get("command", ""):
return False # Deny
return True # Allow
4. Subagents
Isolated agents with separate context windows and specialised capabilities.
When to use:
- Parallel processing of independent tasks
- Context isolation (prevent one task from bloating main context)
- Specialised agents with different tools/models
Python:
from claude_agent_sdk import ClaudeAgentOptions
options = ClaudeAgentOptions(
subagent_definitions={
"researcher": {
"tools": ["read", "grep", "glob"],
"model": "claude-haiku-4",
"description": "Fast research agent"
}
}
)
TypeScript:
const options = {
subagentDefinitions: {
researcher: {
tools: ['read', 'grep', 'glob'],
model: 'claude-haiku-4',
description: 'Fast research agent'
}
}
};
5. Context Management
Agentic Search (Preferred): Use bash + filesystem navigation (grep, ls, tail) before reaching for semantic search. Simpler and more reliable.
Automatic Compaction: SDK automatically summarises messages when approaching token limits. Transparent and automatic.
Folder Structure as Context Engineering: Organise files intentionallyâdirectory structure is visible to the agent and influences its understanding.
Verification Patterns
Rules-Based (Preferred)
Explicit validation enables self-correction:
# In PostToolUse hook
if tool_name == "write":
# Run linter on generated file
lint_result = run_linter(tool_output)
if lint_result.has_errors:
return {"continue": True} # Let agent fix errors
Visual Feedback
For UI tasks, screenshot and re-evaluate:
@tool(name="check_ui", description="Verify UI matches requirements")
async def check_ui(args):
screenshot = take_screenshot(args["url"])
# Return screenshot to agent for evaluation
return {"content": [{"type": "image", "source": screenshot}]}
LLM-as-Judge
Only for fuzzy criteria where rules don't work (higher latency):
judge_result = await secondary_model.evaluate(
criteria="Does output match tone guidelines?",
output=agent_output
)
Common Pitfalls & Solutions
1. System Prompt Not Loading
Symptom: CLAUDE.md ignored, custom prompts not applied
Solution: Set setting_sources=["project"] or ["user", "project"]
# Python
options = ClaudeAgentOptions(setting_sources=["project"])
# TypeScript
const options = { settingSources: ['project'] };
2. Tool Not Available
Symptom: "Tool not found" errors
Solution: Check MCP tool naming: mcp__{server_name}__{tool_name}
3. Permission Denied
Symptom: Agent can't access directories Solution: Add directories explicitly:
options = ClaudeAgentOptions(add_dirs=["/path/to/data"])
4. Python Keyword Conflicts
Symptom: Syntax errors with async or continue parameters
Solution: Use async_ and continue_ (SDK auto-converts)
# Use async_ not async
hook_result = {"async_": True, "continue_": False}
5. Context Overflow
Symptom: Token limit errors Solution: Use subagents for isolation or let automatic compaction handle it
6. Tool Execution Failures
Symptom: Tools fail silently or with unclear errors Solution: Return structured error messages in tool responses:
return {
"content": [{
"type": "text",
"text": "Error: Invalid input. Expected format: ...",
"isError": True
}]
}
7. External MCP Server Not Connecting
Symptom: stdio/SSE MCP servers timeout Solution: Verify server is executable and logs are accessible:
# Check server stderr in context.mcp_server_logs
async def debug_hook(input_data, tool_use_id, context):
print(context.mcp_server_logs.get("server_name"))
Language-Specific Considerations
Python vs TypeScript
| Aspect | Python | TypeScript |
|---|---|---|
| Runtime | anyio.run(main) | Native async/await |
| Min Version | Python 3.10+ | Node.js 18+ |
| Type Safety | Type hints optional | Strict types with Zod |
| Hook Fields | async_, continue_ | async, continue |
| CLI | Bundled (no install) | Separate install needed |
| Tool Validation | Dict-based schemas | Zod schemas |
TypeScript Advantages
- Linting provides extra feedback layer for generated code
- Stronger type safety catches errors earlier
- Better IDE integration
Python Advantages
- Simpler setup for data science workflows
- Direct integration with ML/data tools
- More concise for scripting tasks
Decision Frameworks
When to Use Claude Agent SDK
â Use when:
- Building autonomous agents that need computer access
- Iterative workflows with verification loops
- Multi-step tasks requiring context and tool use
- Custom tool integration requirements
- Need for permission control and safety
â Don't use when:
- Simple API calls sufficient (use Messages API)
- No tool/computer access needed
- Purely conversational applications
- Real-time streaming responses critical
Tool vs Bash vs Code Generation
Use Custom Tools when:
- Operation repeats frequently
- Need structured input/output validation
- Want prominent placement in agent context
- Require error handling and retry logic
Use Bash when:
- One-off exploration or debugging
- System operations (git, file management)
- Flexible scripting without formal structure
Use Code Generation when:
- Need structured, reusable output
- Can validate with linting/compilation
- Building components or modules
- TypeScript preferred for feedback quality
SDK MCP vs External MCP
Use SDK MCP (in-process) when:
- Building custom tools for your agent
- Performance matters (no subprocess overhead)
- Need shared state with main process
- Debugging tool logic
Use External MCP (stdio/SSE) when:
- Integrating third-party services
- Tool needs isolation
- Using pre-built MCP servers
- Cross-language tool requirements
Session Management
Resuming Sessions
Python:
# First run
result1 = await query(user_message="Create a file", working_dir=".")
# Resume with new message
result2 = await query(
user_message="Now modify it",
working_dir=".",
session_id=result1.session_id
)
TypeScript:
// First run
const result1 = await client.query({ userMessage: 'Create a file' });
// Resume
const result2 = await client.query({
userMessage: 'Now modify it',
sessionId: result1.sessionId
});
Forking Sessions
Create alternative branches from a point:
# Fork for different approach
result_fork = await query(
user_message="Try different implementation",
session_id=original_result.session_id,
fork_session=True
)
Budget Control
Set USD spending limits:
options = ClaudeAgentOptions(budget={"usd": 5.00})
Agent stops when budget exceeded. Useful for cost control in production.
Testing Patterns
Mock Tools for Testing
Python:
import pytest
from unittest.mock import AsyncMock
@pytest.fixture
def mock_tool():
return AsyncMock(return_value={
"content": [{"type": "text", "text": "mocked"}]
})
async def test_agent(mock_tool):
server = create_sdk_mcp_server(name="test", tools=[mock_tool])
# Test with mocked tool
TypeScript:
import { jest } from '@jest/globals';
const mockTool = {
name: 'test',
execute: jest.fn().mockResolvedValue({
content: [{ type: 'text', text: 'mocked' }]
})
};
Integration Testing
Test with real tools in isolated environment:
import tempfile
import os
async def test_file_operations():
with tempfile.TemporaryDirectory() as tmpdir:
result = await query(
user_message="Create test.txt with content 'hello'",
working_dir=tmpdir,
permission_mode="bypassPermissions"
)
assert os.path.exists(f"{tmpdir}/test.txt")
Migration from Claude Code SDK
If migrating from the deprecated claude-code-sdk:
- Package renamed:
claude-code-sdkâclaude-agent-sdk - System prompt not default: Must explicitly set or enable via
setting_sources - Type renamed (Python):
ClaudeCodeOptionsâClaudeAgentOptions - Settings sources not automatic: Must set
setting_sources=["project"]
See migration guide: https://platform.claude.com/docs/en/agent-sdk/migration-guide
Performance Optimisation
- Use Haiku for simple tasks â 5x cheaper, faster for research/exploration
- SDK MCP over external â No subprocess overhead
- Batch operations â Combine file operations when possible
- Set turn limits â Prevent infinite loops (
turn_limitparameter) - Monitor token usage â Use budget controls in production
Security Best Practices
- Always validate tool inputs â Never trust unchecked input
- Use permission callbacks â Deny dangerous operations dynamically
- Restrict filesystem access â Use
add_dirsto limit scope - Sandbox external MCP servers â Isolate third-party tools
- Set budgets â Prevent runaway costs
- Log all tool uses â Audit trail via PostToolUse hooks
- Never hardcode API keys â Use environment variables
Key Principles
- Folder structure is context engineering â Organise intentionally
- Rules-based feedback enables self-correction â Add linting and validation
- Start with agentic search â Bash navigation before semantic search
- Tools are primary, bash is secondary â Use tools for repeatable operations
- TypeScript for generated code â Extra feedback layer improves quality
- Verification closes the loop â Always validate agent work
- Use subagents for isolation â Prevent context bloat and enable parallelism
Additional Resources
- API Reference (Python): https://platform.claude.com/docs/en/agent-sdk/python
- API Reference (TypeScript): https://platform.claude.com/docs/en/agent-sdk/typescript
- Examples Repository: https://github.com/anthropics/claude-agent-sdk-demos
- Engineering Blog: https://www.anthropic.com/engineering/building-agents-with-the-claude-agent-sdk
Repository
