Marketplace

Unnamed Skill

Cloudflare Vectorize vector database for semantic search and RAG. Use for vector indexes, embeddings, similarity search, or encountering dimension mismatches, filter errors.

$ Installer

git clone https://github.com/secondsky/claude-skills /tmp/claude-skills && cp -r /tmp/claude-skills/plugins/cloudflare-vectorize/skills/cloudflare-vectorize ~/.claude/skills/claude-skills

// tip: Run this command in your terminal to install the skill


name: cloudflare-vectorize description: Cloudflare Vectorize vector database for semantic search and RAG. Use for vector indexes, embeddings, similarity search, or encountering dimension mismatches, filter errors.

Keywords: vectorize, vector database, vector index, vector search, similarity search, semantic search, nearest neighbor, knn search, ann search, RAG, retrieval augmented generation, chat with data, document search, semantic Q&A, context retrieval, bge-base, @cf/baai/bge-base-en-v1.5, text-embedding-3-small, text-embedding-3-large, Workers AI embeddings, openai embeddings, insert vectors, upsert vectors, query vectors, delete vectors, metadata filtering, namespace filtering, topK search, cosine similarity, euclidean distance, dot product, wrangler vectorize, metadata index, create vectorize index, vectorize dimensions, vectorize metric, vectorize binding license: MIT

Cloudflare Vectorize

Complete implementation guide for Cloudflare Vectorize - a globally distributed vector database for building semantic search, RAG (Retrieval Augmented Generation), and AI-powered applications with Cloudflare Workers.

Status: Production Ready ✅ Last Updated: 2025-11-21 Dependencies: cloudflare-worker-base (for Worker setup), cloudflare-workers-ai (for embeddings) Latest Versions: wrangler@4.50.0, @cloudflare/workers-types@4.20251014.0 Token Savings: ~65% Errors Prevented: 8 Dev Time Saved: ~3 hours

What This Skill Provides

Core Capabilities

  • Index Management: Create, configure, and manage vector indexes
  • Vector Operations: Insert, upsert, query, delete, and list vectors
  • Metadata Filtering: Advanced filtering with 10 metadata indexes per index
  • Semantic Search: Find similar vectors using cosine, euclidean, or dot-product metrics
  • RAG Patterns: Complete retrieval-augmented generation workflows
  • Workers AI Integration: Native embedding generation with @cf/baai/bge-base-en-v1.5
  • OpenAI Integration: Support for text-embedding-3-small/large models
  • Document Processing: Text chunking and batch ingestion pipelines

Templates Included

  1. basic-search.ts - Simple vector search with Workers AI
  2. rag-chat.ts - Full RAG chatbot with context retrieval
  3. document-ingestion.ts - Document chunking and embedding pipeline
  4. metadata-filtering.ts - Advanced filtering examples

Critical Setup Rules

⚠️ MUST DO BEFORE INSERTING VECTORS

# 1. Create the index with FIXED dimensions and metric
bunx wrangler vectorize create my-index \
  --dimensions=768 \
  --metric=cosine

# 2. Create metadata indexes IMMEDIATELY (before inserting vectors!)
bunx wrangler vectorize create-metadata-index my-index \
  --property-name=category \
  --type=string

bunx wrangler vectorize create-metadata-index my-index \
  --property-name=timestamp \
  --type=number

Why: Metadata indexes MUST exist before vectors are inserted. Vectors added before a metadata index was created won't be filterable on that property.

Index Configuration (Cannot Be Changed Later)

# Dimensions MUST match your embedding model output:
# - Workers AI @cf/baai/bge-base-en-v1.5: 768 dimensions
# - OpenAI text-embedding-3-small: 1536 dimensions
# - OpenAI text-embedding-3-large: 3072 dimensions

# Metrics determine similarity calculation:
# - cosine: Best for normalized embeddings (most common)
# - euclidean: Absolute distance between vectors
# - dot-product: For non-normalized vectors

Wrangler Configuration

wrangler.jsonc:

{
  "name": "my-vectorize-worker",
  "main": "src/index.ts",
  "compatibility_date": "2025-10-21",
  "vectorize": [
    {
      "binding": "VECTORIZE_INDEX",
      "index_name": "my-index"
    }
  ],
  "ai": {
    "binding": "AI"
  }
}

TypeScript Types

export interface Env {
  VECTORIZE_INDEX: VectorizeIndex;
  AI: Ai;
}

interface VectorizeVector {
  id: string;
  values: number[] | Float32Array | Float64Array;
  namespace?: string;
  metadata?: Record<string, string | number | boolean | string[]>;
}

interface VectorizeMatches {
  matches: Array<{
    id: string;
    score: number;
    values?: number[];
    metadata?: Record<string, any>;
    namespace?: string;
  }>;
  count: number;
}

Common Operations

Quick Reference

OperationMethodKey Point
Insertinsert([...])Keeps first if ID exists
Upsertupsert([...])Overwrites if ID exists (use for updates)
Queryquery(vector, { topK, filter })Returns similar vectors
DeletedeleteByIds([...])Remove by ID array
GetgetByIds([...])Retrieve specific vectors

Filter Operators

OperatorExampleDescription
$eq{ category: "docs" }Equality (implicit)
$ne{ status: { $ne: "archived" } }Not equal
$in{ category: { $in: ["a", "b"] } }In array
$nin{ category: { $nin: ["x"] } }Not in array
$gte/$lt{ timestamp: { $gte: 123 } }Range queries

📄 Full operations guide: Load references/vector-operations.md for complete insert/upsert/query/delete examples with code.

Embedding Generation

ModelProviderDimensionsBest For
@cf/baai/bge-base-en-v1.5Workers AI768Free, general purpose
text-embedding-3-smallOpenAI1536Balance quality/cost
text-embedding-3-largeOpenAI3072Highest quality

📄 Integration guides:

  • Load references/integration-workers-ai-bge-base.md for Workers AI setup
  • Load references/integration-openai-embeddings.md for OpenAI integration

Metadata Best Practices

Key Limits

LimitValue
Max metadata indexes10 per index
Max metadata size10 KiB per vector
String indexFirst 64 bytes (UTF-8)
Filter sizeMax 2048 bytes

Invalid Key Characters

Keys cannot: be empty, contain . (reserved for nesting), contain ", or start with $.

📄 Complete metadata guide: Load references/metadata-guide.md for cardinality best practices, nested metadata, and advanced filtering patterns.

RAG Pattern (Full Example)

export default {
  async fetch(request: Request, env: Env): Promise<Response> {
    const { question } = await request.json();

    // 1. Generate embedding for user question
    const questionEmbedding = await env.AI.run('@cf/baai/bge-base-en-v1.5', {
      text: question
    });

    // 2. Search vector database for similar content
    const results = await env.VECTORIZE_INDEX.query(
      questionEmbedding.data[0],
      {
        topK: 3,
        returnMetadata: 'all',
        filter: { type: "documentation" }
      }
    );

    // 3. Build context from retrieved documents
    const context = results.matches
      .map(m => m.metadata.content)
      .join('\n\n---\n\n');

    // 4. Generate answer with LLM using context
    const answer = await env.AI.run('@cf/meta/llama-3-8b-instruct', {
      messages: [
        {
          role: "system",
          content: `Answer based on this context:\n\n${context}`
        },
        {
          role: "user",
          content: question
        }
      ]
    });

    return Response.json({
      answer: answer.response,
      sources: results.matches.map(m => m.metadata.title)
    });
  }
};

Document Chunking Strategy

Recommended chunk sizes: 300-500 characters for semantic coherence.

Key metadata for chunks:

  • doc_id: Parent document ID
  • chunk_index: Position in document
  • content: Text for retrieval display

📄 Full chunking implementation: See templates/document-ingestion.ts for complete chunking pipeline.

Common Errors & Solutions

Error 1: Metadata Index Created After Vectors Inserted

Problem: Filtering doesn't work on existing vectors
Solution: Delete and re-insert vectors OR create metadata indexes BEFORE inserting

Error 2: Dimension Mismatch

Problem: "Vector dimensions do not match index configuration"
Solution: Ensure embedding model output matches index dimensions:
  - Workers AI bge-base: 768
  - OpenAI small: 1536
  - OpenAI large: 3072

Error 3: Invalid Metadata Keys

Problem: "Invalid metadata key"
Solution: Keys cannot:
  - Be empty
  - Contain . (dot)
  - Contain " (quote)
  - Start with $ (dollar sign)

Error 4: Filter Too Large

Problem: "Filter exceeds 2048 bytes"
Solution: Simplify filter or split into multiple queries

Error 5: Range Query on High Cardinality

Problem: Slow queries or reduced accuracy
Solution: Use lower cardinality fields for range queries, or use seconds instead of milliseconds for timestamps

Error 6: Insert vs Upsert Confusion

Problem: Updates not reflecting in index
Solution: Use upsert() to overwrite existing vectors, not insert()

Error 7: Missing Bindings

Problem: "VECTORIZE_INDEX is not defined"
Solution: Add [[vectorize]] binding to wrangler.jsonc

Error 8: Namespace vs Metadata Confusion

Problem: Unclear when to use namespace vs metadata filtering
Solution:
  - Namespace: Partition key, applied BEFORE metadata filters
  - Metadata: Flexible key-value filtering within namespace

Wrangler CLI Reference

Essential commands:

# Create index (dimensions/metric are PERMANENT)
bunx wrangler vectorize create <name> --dimensions=768 --metric=cosine

# Create metadata index (MUST be before inserting vectors!)
bunx wrangler vectorize create-metadata-index <name> --property-name=category --type=string

# Get index info
bunx wrangler vectorize info <name>

📄 Full CLI reference: Load references/wrangler-commands.md for all vectorize commands.

Performance Tips

  1. Batch Operations: Insert/upsert in batches of 100-1000 vectors
  2. Selective Return: Only use returnValues: true when needed (saves bandwidth)
  3. Metadata Cardinality: Keep indexed metadata fields low cardinality for range queries
  4. Namespace Filtering: Apply namespace filter before metadata filters (processed first)
  5. Query Optimization: Use topK=3-10 for best latency (larger values increase search time)

When to Use This Skill

Use Vectorize when:

  • Building semantic search over documents, products, or content
  • Implementing RAG chatbots with context retrieval
  • Creating recommendation engines based on similarity
  • Building multi-tenant applications (use namespaces)
  • Need global distribution and low latency

Don't use Vectorize for:

  • Traditional relational data (use D1)
  • Key-value lookups (use KV)
  • Large file storage (use R2)
  • Real-time collaborative state (use Durable Objects)

When to Load References

Reference FileLoad When...
references/vector-operations.mdNeed full insert/upsert/query/delete code examples
references/metadata-guide.mdSetting up metadata indexes, filtering best practices
references/wrangler-commands.mdUsing Vectorize CLI commands
references/integration-workers-ai-bge-base.mdIntegrating Workers AI embeddings
references/integration-openai-embeddings.mdIntegrating OpenAI embeddings
references/embedding-models.mdComparing embedding model options
references/index-operations.mdIndex lifecycle management

Templates

TemplatePurpose
templates/basic-search.tsSimple vector search
templates/rag-chat.tsComplete RAG chatbot
templates/document-ingestion.tsDocument chunking pipeline
templates/metadata-filtering.tsAdvanced filtering

Official Documentation


Version: 1.0.0 Status: Production Ready ✅ Token Savings: ~65% Errors Prevented: 8 major categories Dev Time Saved: ~2.5 hours per implementation

Repository

secondsky
secondsky
Author
secondsky/claude-skills/plugins/cloudflare-vectorize/skills/cloudflare-vectorize
9
Stars
0
Forks
Updated3d ago
Added6d ago