Unnamed Skill
Cloudflare Vectorize vector database for semantic search and RAG. Use for vector indexes, embeddings, similarity search, or encountering dimension mismatches, filter errors.
$ Installer
git clone https://github.com/secondsky/claude-skills /tmp/claude-skills && cp -r /tmp/claude-skills/plugins/cloudflare-vectorize/skills/cloudflare-vectorize ~/.claude/skills/claude-skills// tip: Run this command in your terminal to install the skill
name: cloudflare-vectorize description: Cloudflare Vectorize vector database for semantic search and RAG. Use for vector indexes, embeddings, similarity search, or encountering dimension mismatches, filter errors.
Keywords: vectorize, vector database, vector index, vector search, similarity search, semantic search, nearest neighbor, knn search, ann search, RAG, retrieval augmented generation, chat with data, document search, semantic Q&A, context retrieval, bge-base, @cf/baai/bge-base-en-v1.5, text-embedding-3-small, text-embedding-3-large, Workers AI embeddings, openai embeddings, insert vectors, upsert vectors, query vectors, delete vectors, metadata filtering, namespace filtering, topK search, cosine similarity, euclidean distance, dot product, wrangler vectorize, metadata index, create vectorize index, vectorize dimensions, vectorize metric, vectorize binding license: MIT
Cloudflare Vectorize
Complete implementation guide for Cloudflare Vectorize - a globally distributed vector database for building semantic search, RAG (Retrieval Augmented Generation), and AI-powered applications with Cloudflare Workers.
Status: Production Ready ✅ Last Updated: 2025-11-21 Dependencies: cloudflare-worker-base (for Worker setup), cloudflare-workers-ai (for embeddings) Latest Versions: wrangler@4.50.0, @cloudflare/workers-types@4.20251014.0 Token Savings: ~65% Errors Prevented: 8 Dev Time Saved: ~3 hours
What This Skill Provides
Core Capabilities
- ✅ Index Management: Create, configure, and manage vector indexes
- ✅ Vector Operations: Insert, upsert, query, delete, and list vectors
- ✅ Metadata Filtering: Advanced filtering with 10 metadata indexes per index
- ✅ Semantic Search: Find similar vectors using cosine, euclidean, or dot-product metrics
- ✅ RAG Patterns: Complete retrieval-augmented generation workflows
- ✅ Workers AI Integration: Native embedding generation with @cf/baai/bge-base-en-v1.5
- ✅ OpenAI Integration: Support for text-embedding-3-small/large models
- ✅ Document Processing: Text chunking and batch ingestion pipelines
Templates Included
- basic-search.ts - Simple vector search with Workers AI
- rag-chat.ts - Full RAG chatbot with context retrieval
- document-ingestion.ts - Document chunking and embedding pipeline
- metadata-filtering.ts - Advanced filtering examples
Critical Setup Rules
⚠️ MUST DO BEFORE INSERTING VECTORS
# 1. Create the index with FIXED dimensions and metric
bunx wrangler vectorize create my-index \
--dimensions=768 \
--metric=cosine
# 2. Create metadata indexes IMMEDIATELY (before inserting vectors!)
bunx wrangler vectorize create-metadata-index my-index \
--property-name=category \
--type=string
bunx wrangler vectorize create-metadata-index my-index \
--property-name=timestamp \
--type=number
Why: Metadata indexes MUST exist before vectors are inserted. Vectors added before a metadata index was created won't be filterable on that property.
Index Configuration (Cannot Be Changed Later)
# Dimensions MUST match your embedding model output:
# - Workers AI @cf/baai/bge-base-en-v1.5: 768 dimensions
# - OpenAI text-embedding-3-small: 1536 dimensions
# - OpenAI text-embedding-3-large: 3072 dimensions
# Metrics determine similarity calculation:
# - cosine: Best for normalized embeddings (most common)
# - euclidean: Absolute distance between vectors
# - dot-product: For non-normalized vectors
Wrangler Configuration
wrangler.jsonc:
{
"name": "my-vectorize-worker",
"main": "src/index.ts",
"compatibility_date": "2025-10-21",
"vectorize": [
{
"binding": "VECTORIZE_INDEX",
"index_name": "my-index"
}
],
"ai": {
"binding": "AI"
}
}
TypeScript Types
export interface Env {
VECTORIZE_INDEX: VectorizeIndex;
AI: Ai;
}
interface VectorizeVector {
id: string;
values: number[] | Float32Array | Float64Array;
namespace?: string;
metadata?: Record<string, string | number | boolean | string[]>;
}
interface VectorizeMatches {
matches: Array<{
id: string;
score: number;
values?: number[];
metadata?: Record<string, any>;
namespace?: string;
}>;
count: number;
}
Common Operations
Quick Reference
| Operation | Method | Key Point |
|---|---|---|
| Insert | insert([...]) | Keeps first if ID exists |
| Upsert | upsert([...]) | Overwrites if ID exists (use for updates) |
| Query | query(vector, { topK, filter }) | Returns similar vectors |
| Delete | deleteByIds([...]) | Remove by ID array |
| Get | getByIds([...]) | Retrieve specific vectors |
Filter Operators
| Operator | Example | Description |
|---|---|---|
$eq | { category: "docs" } | Equality (implicit) |
$ne | { status: { $ne: "archived" } } | Not equal |
$in | { category: { $in: ["a", "b"] } } | In array |
$nin | { category: { $nin: ["x"] } } | Not in array |
$gte/$lt | { timestamp: { $gte: 123 } } | Range queries |
📄 Full operations guide: Load references/vector-operations.md for complete insert/upsert/query/delete examples with code.
Embedding Generation
| Model | Provider | Dimensions | Best For |
|---|---|---|---|
@cf/baai/bge-base-en-v1.5 | Workers AI | 768 | Free, general purpose |
text-embedding-3-small | OpenAI | 1536 | Balance quality/cost |
text-embedding-3-large | OpenAI | 3072 | Highest quality |
📄 Integration guides:
- Load
references/integration-workers-ai-bge-base.mdfor Workers AI setup - Load
references/integration-openai-embeddings.mdfor OpenAI integration
Metadata Best Practices
Key Limits
| Limit | Value |
|---|---|
| Max metadata indexes | 10 per index |
| Max metadata size | 10 KiB per vector |
| String index | First 64 bytes (UTF-8) |
| Filter size | Max 2048 bytes |
Invalid Key Characters
Keys cannot: be empty, contain . (reserved for nesting), contain ", or start with $.
📄 Complete metadata guide: Load references/metadata-guide.md for cardinality best practices, nested metadata, and advanced filtering patterns.
RAG Pattern (Full Example)
export default {
async fetch(request: Request, env: Env): Promise<Response> {
const { question } = await request.json();
// 1. Generate embedding for user question
const questionEmbedding = await env.AI.run('@cf/baai/bge-base-en-v1.5', {
text: question
});
// 2. Search vector database for similar content
const results = await env.VECTORIZE_INDEX.query(
questionEmbedding.data[0],
{
topK: 3,
returnMetadata: 'all',
filter: { type: "documentation" }
}
);
// 3. Build context from retrieved documents
const context = results.matches
.map(m => m.metadata.content)
.join('\n\n---\n\n');
// 4. Generate answer with LLM using context
const answer = await env.AI.run('@cf/meta/llama-3-8b-instruct', {
messages: [
{
role: "system",
content: `Answer based on this context:\n\n${context}`
},
{
role: "user",
content: question
}
]
});
return Response.json({
answer: answer.response,
sources: results.matches.map(m => m.metadata.title)
});
}
};
Document Chunking Strategy
Recommended chunk sizes: 300-500 characters for semantic coherence.
Key metadata for chunks:
doc_id: Parent document IDchunk_index: Position in documentcontent: Text for retrieval display
📄 Full chunking implementation: See templates/document-ingestion.ts for complete chunking pipeline.
Common Errors & Solutions
Error 1: Metadata Index Created After Vectors Inserted
Problem: Filtering doesn't work on existing vectors
Solution: Delete and re-insert vectors OR create metadata indexes BEFORE inserting
Error 2: Dimension Mismatch
Problem: "Vector dimensions do not match index configuration"
Solution: Ensure embedding model output matches index dimensions:
- Workers AI bge-base: 768
- OpenAI small: 1536
- OpenAI large: 3072
Error 3: Invalid Metadata Keys
Problem: "Invalid metadata key"
Solution: Keys cannot:
- Be empty
- Contain . (dot)
- Contain " (quote)
- Start with $ (dollar sign)
Error 4: Filter Too Large
Problem: "Filter exceeds 2048 bytes"
Solution: Simplify filter or split into multiple queries
Error 5: Range Query on High Cardinality
Problem: Slow queries or reduced accuracy
Solution: Use lower cardinality fields for range queries, or use seconds instead of milliseconds for timestamps
Error 6: Insert vs Upsert Confusion
Problem: Updates not reflecting in index
Solution: Use upsert() to overwrite existing vectors, not insert()
Error 7: Missing Bindings
Problem: "VECTORIZE_INDEX is not defined"
Solution: Add [[vectorize]] binding to wrangler.jsonc
Error 8: Namespace vs Metadata Confusion
Problem: Unclear when to use namespace vs metadata filtering
Solution:
- Namespace: Partition key, applied BEFORE metadata filters
- Metadata: Flexible key-value filtering within namespace
Wrangler CLI Reference
Essential commands:
# Create index (dimensions/metric are PERMANENT)
bunx wrangler vectorize create <name> --dimensions=768 --metric=cosine
# Create metadata index (MUST be before inserting vectors!)
bunx wrangler vectorize create-metadata-index <name> --property-name=category --type=string
# Get index info
bunx wrangler vectorize info <name>
📄 Full CLI reference: Load references/wrangler-commands.md for all vectorize commands.
Performance Tips
- Batch Operations: Insert/upsert in batches of 100-1000 vectors
- Selective Return: Only use
returnValues: truewhen needed (saves bandwidth) - Metadata Cardinality: Keep indexed metadata fields low cardinality for range queries
- Namespace Filtering: Apply namespace filter before metadata filters (processed first)
- Query Optimization: Use topK=3-10 for best latency (larger values increase search time)
When to Use This Skill
✅ Use Vectorize when:
- Building semantic search over documents, products, or content
- Implementing RAG chatbots with context retrieval
- Creating recommendation engines based on similarity
- Building multi-tenant applications (use namespaces)
- Need global distribution and low latency
❌ Don't use Vectorize for:
- Traditional relational data (use D1)
- Key-value lookups (use KV)
- Large file storage (use R2)
- Real-time collaborative state (use Durable Objects)
When to Load References
| Reference File | Load When... |
|---|---|
references/vector-operations.md | Need full insert/upsert/query/delete code examples |
references/metadata-guide.md | Setting up metadata indexes, filtering best practices |
references/wrangler-commands.md | Using Vectorize CLI commands |
references/integration-workers-ai-bge-base.md | Integrating Workers AI embeddings |
references/integration-openai-embeddings.md | Integrating OpenAI embeddings |
references/embedding-models.md | Comparing embedding model options |
references/index-operations.md | Index lifecycle management |
Templates
| Template | Purpose |
|---|---|
templates/basic-search.ts | Simple vector search |
templates/rag-chat.ts | Complete RAG chatbot |
templates/document-ingestion.ts | Document chunking pipeline |
templates/metadata-filtering.ts | Advanced filtering |
Official Documentation
Version: 1.0.0 Status: Production Ready ✅ Token Savings: ~65% Errors Prevented: 8 major categories Dev Time Saved: ~2.5 hours per implementation
Repository
