Marketplace
workers-performance
Cloudflare Workers performance optimization with CPU, memory, caching, bundle size. Use for slow workers, high latency, cold starts, or encountering CPU limits, memory issues, timeout errors.
$ Installer
git clone https://github.com/secondsky/claude-skills /tmp/claude-skills && cp -r /tmp/claude-skills/plugins/cloudflare-workers/skills/cloudflare-workers-performance ~/.claude/skills/claude-skills// tip: Run this command in your terminal to install the skill
SKILL.md
name: workers-performance description: Cloudflare Workers performance optimization with CPU, memory, caching, bundle size. Use for slow workers, high latency, cold starts, or encountering CPU limits, memory issues, timeout errors.
Cloudflare Workers Performance Optimization
Techniques for maximizing Worker performance and minimizing latency.
Quick Wins
// 1. Avoid unnecessary cloning
// â Bad: Clones entire request
const body = await request.clone().json();
// â
Good: Parse directly when not re-using body
const body = await request.json();
// 2. Use streaming instead of buffering
// â Bad: Buffers entire response
const text = await response.text();
return new Response(transform(text));
// â
Good: Stream transformation
return new Response(response.body.pipeThrough(new TransformStream({
transform(chunk, controller) {
controller.enqueue(process(chunk));
}
})));
// 3. Cache expensive operations
const cache = caches.default;
const cached = await cache.match(request);
if (cached) return cached;
Critical Rules
- Stay under CPU limits - 10ms (free), 30ms (paid), 50ms (unbound)
- Minimize cold starts - Keep bundles < 1MB, avoid dynamic imports
- Use Cache API - Cache responses at the edge
- Stream large payloads - Don't buffer entire responses
- Batch operations - Combine multiple KV/D1 calls
Top 10 Performance Errors
| Error | Symptom | Fix |
|---|---|---|
| CPU limit exceeded | Worker terminated | Optimize hot paths, use streaming |
| Cold start latency | First request slow | Reduce bundle size, avoid top-level await |
| Memory pressure | Slow GC, timeouts | Stream data, avoid large arrays |
| KV latency | Slow reads | Use Cache API, batch reads |
| D1 slow queries | High latency | Add indexes, optimize SQL |
| Large bundles | Slow cold starts | Tree-shake, code split |
| Blocking operations | Request timeouts | Use Promise.all, streaming |
| Unnecessary cloning | Memory spike | Only clone when needed |
| Missing cache | Repeated computation | Implement caching layer |
| Sync operations | CPU spikes | Use async alternatives |
CPU Optimization
Profile Hot Paths
async function profiledHandler(request: Request): Promise<Response> {
const timing: Record<string, number> = {};
const time = async <T>(name: string, fn: () => Promise<T>): Promise<T> => {
const start = Date.now();
const result = await fn();
timing[name] = Date.now() - start;
return result;
};
const data = await time('fetch', () => fetchData());
const processed = await time('process', () => processData(data));
const response = await time('serialize', () => serialize(processed));
console.log('Timing:', timing);
return new Response(response);
}
Optimize JSON Operations
// For large JSON, use streaming parser
import { JSONParser } from '@streamparser/json';
async function parseStreamingJSON(stream: ReadableStream): Promise<unknown[]> {
const parser = new JSONParser();
const results: unknown[] = [];
parser.onValue = (value) => results.push(value);
for await (const chunk of stream) {
parser.write(chunk);
}
return results;
}
Memory Optimization
Avoid Large Arrays
// â Bad: Loads all into memory
const items = await db.prepare('SELECT * FROM items').all();
const processed = items.results.map(transform);
// â
Good: Process in batches
async function* batchProcess(db: D1Database, batchSize = 100) {
let offset = 0;
while (true) {
const { results } = await db
.prepare('SELECT * FROM items LIMIT ? OFFSET ?')
.bind(batchSize, offset)
.all();
if (results.length === 0) break;
for (const item of results) {
yield transform(item);
}
offset += batchSize;
}
}
Caching Strategies
Multi-Layer Cache
interface CacheLayer {
get(key: string): Promise<unknown | null>;
set(key: string, value: unknown, ttl?: number): Promise<void>;
}
// Layer 1: In-memory (request-scoped)
const memoryCache = new Map<string, unknown>();
// Layer 2: Cache API (edge-local)
const edgeCache: CacheLayer = {
async get(key) {
const response = await caches.default.match(new Request(`https://cache/${key}`));
return response ? response.json() : null;
},
async set(key, value, ttl = 60) {
await caches.default.put(
new Request(`https://cache/${key}`),
new Response(JSON.stringify(value), {
headers: { 'Cache-Control': `max-age=${ttl}` }
})
);
}
};
// Layer 3: KV (global)
// Use env.KV.get/put
Bundle Optimization
// 1. Tree-shake imports
// â Bad
import * as lodash from 'lodash';
// â
Good
import { debounce } from 'lodash-es';
// 2. Lazy load heavy dependencies
let heavyLib: typeof import('heavy-lib') | undefined;
async function getHeavyLib() {
if (!heavyLib) {
heavyLib = await import('heavy-lib');
}
return heavyLib;
}
When to Load References
Load specific references based on the task:
- Optimizing CPU usage? â Load
references/cpu-optimization.md - Memory issues? â Load
references/memory-optimization.md - Implementing caching? â Load
references/caching-strategies.md - Reducing bundle size? â Load
references/bundle-optimization.md - Cold start problems? â Load
references/cold-starts.md
Templates
| Template | Purpose | Use When |
|---|---|---|
templates/performance-middleware.ts | Performance monitoring | Adding timing/profiling |
templates/caching-layer.ts | Multi-layer caching | Implementing cache |
templates/optimized-worker.ts | Performance patterns | Starting optimized worker |
Scripts
| Script | Purpose | Command |
|---|---|---|
scripts/benchmark.sh | Load testing | ./benchmark.sh <url> |
scripts/profile-worker.sh | CPU profiling | ./profile-worker.sh |
Resources
Repository

secondsky
Author
secondsky/claude-skills/plugins/cloudflare-workers/skills/cloudflare-workers-performance
9
Stars
0
Forks
Updated3d ago
Added6d ago