fleet-agent

Context-aware development assistant for AgenticFleet with auto-learning and dual memory (NeonDB + ChromaDB). Handles development workflows with intelligent context management.

$ インストール

git clone https://github.com/Qredence/agentic-fleet /tmp/agentic-fleet && cp -r /tmp/agentic-fleet/.fleet/context/system/fleet-agent ~/.claude/skills/agentic-fleet

// tip: Run this command in your terminal to install the skill


name: fleet-agent description: Context-aware development assistant for AgenticFleet with auto-learning and dual memory (NeonDB + ChromaDB). Handles development workflows with intelligent context management. focus: development, context-management, pattern-learning, code-analysis triggers:

  • "add an agent"
  • "create a workflow"
  • "DSPy signature"
  • "test code"
  • "memory operations"
  • "code analysis"
  • "pattern extraction" capabilities:
  • Context-aware block loading (keyword-based)
  • Dual database search (NeonDB structured + ChromaDB semantic)
  • Pattern extraction with detailed code examples
  • Basic code analysis (DSPy signatures, agents, workflows, tools)
  • Session tracking in NeonDB
  • Auto-learning enabled

Fleet Agent

A context-aware development assistant for AgenticFleet that maintains persistent memory across sessions using a hybrid NeonDB + ChromaDB architecture.

Memory Architecture

Dual Storage

  • ChromaDB (Semantic): Skills, patterns, code snippets with embedding-based search
  • NeonDB (Structured): Sessions, users, analytics, skill metadata with SQL queries

Context Layers

  1. Core Memory (.fleet/context/core/): Always loaded

    • project.md: Architecture, conventions, tech stack
    • human.md: User preferences, communication style
    • persona.md: Agent guidelines, tone
  2. Topic Blocks (.fleet/context/blocks/): Loaded on demand

    • project/: commands, conventions, gotchas, architecture
    • workflows/: git, review
    • decisions/: ADRs
  3. Skills (ChromaDB + NeonDB): Semantic + structured patterns

Usage Examples

Learn a Pattern

/fleet-agent learn --name "add_dspy_agent" --category "agent" --content "Create agent via AgentFactory with DSPyEnhancedAgent wrapper..."

Recall Information

/fleet-agent recall "DSPy typed signatures"
/fleet-agent context "add a new agent for web search"

Analyze Code

/fleet-agent analyze src/agents/coordinator.py

Session Management

/fleet-agent session start
/fleet-agent session status
/fleet-agent session summary "Completed agent creation workflow"

Commands

CommandDescription
learn --name <name> --category <cat> --content <code>Save pattern to both databases
recall <query>Search NeonDB + ChromaDB
context <task>Load relevant context blocks
analyze <file>Analyze code structure
session startStart new session
session statusShow current session
session summary <text>Save session summary
statsShow development metrics

Auto-Learning

Automatically extracts and saves patterns after successful task completion with detailed code examples:

name: pattern_add_dspy_signature
category: dspy
description: How to create a DSPy signature with TypedPredictor
implementation: |
  class TaskAnalysisOutput(BaseModel):
      complexity: Literal["low", "medium", "high"]

  class TaskAnalysis(dspy.Signature):
      task: str = dspy.InputField(desc="Task to analyze")
      analysis: TaskAnalysisOutput = dspy.OutputField()

Implementation

Main script: .fleet/context/scripts/fleet_agent.py

Invocation: uv run python .fleet/context/scripts/fleet_agent.py <command>

Dependencies: neon_memory.py, chroma_driver.py, memory_loader.py

See Also

  • memory-system-guide.md: Complete memory system documentation
  • .fleet/context/MEMORY.md: Memory hierarchy and commands