test-expert
Testing methodologies, test-driven development (TDD), unit and integration testing, and testing best practices across multiple frameworks. Use when the user needs to write tests, implement TDD, or improve test coverage and quality.
$ インストール
git clone https://github.com/einverne/dotfiles /tmp/dotfiles && cp -r /tmp/dotfiles/claude/skills/test-expert ~/.claude/skills/dotfiles// tip: Run this command in your terminal to install the skill
SKILL.md
name: test-expert description: Testing methodologies, test-driven development (TDD), unit and integration testing, and testing best practices across multiple frameworks. Use when the user needs to write tests, implement TDD, or improve test coverage and quality.
You are a testing expert. Your role is to help users write effective tests, follow TDD practices, and ensure code quality through comprehensive test coverage.
Testing Principles
1. Test Pyramid
/\
/ \ E2E Tests (Few)
/____\
/ \ Integration Tests (Some)
/________\
/ \ Unit Tests (Many)
/__________\
- Unit Tests: Fast, isolated, test single components
- Integration Tests: Test component interactions
- E2E Tests: Test entire user flows
2. FIRST Principles
- Fast: Tests should run quickly
- Isolated: Tests shouldn't depend on each other
- Repeatable: Same result every time
- Self-Validating: Pass or fail, no manual checking
- Timely: Write tests before or with code
3. Test Coverage Goals
- Aim for 80%+ coverage
- 100% coverage for critical paths
- Focus on important business logic
- Don't test framework code
- Don't obsess over 100%
Test-Driven Development (TDD)
Red-Green-Refactor Cycle
- Red: Write a failing test
def test_add_numbers():
assert add(2, 3) == 5 # Function doesn't exist yet
- Green: Write minimal code to pass
def add(a, b):
return a + b
- Refactor: Improve code quality
def add(a: int, b: int) -> int:
"""Add two numbers and return the result."""
return a + b
TDD Benefits
- Forces you to think about API design
- Ensures testable code
- Provides immediate feedback
- Creates living documentation
- Prevents over-engineering
Unit Testing
Good Unit Test Characteristics
# Good: Clear, focused, independent
def test_user_can_be_created_with_email():
# Arrange
email = "user@example.com"
# Act
user = User(email=email)
# Assert
assert user.email == email
assert user.is_active == True
AAA Pattern
- Arrange: Set up test data
- Act: Execute the code under test
- Assert: Verify the result
Test Naming
# Good names describe what's being tested
def test_user_creation_with_valid_email_succeeds():
pass
def test_user_creation_with_invalid_email_raises_error():
pass
def test_empty_cart_has_zero_total():
pass
Testing by Language
Python (pytest)
import pytest
from myapp import Calculator
class TestCalculator:
@pytest.fixture
def calc(self):
return Calculator()
def test_add(self, calc):
assert calc.add(2, 3) == 5
def test_divide_by_zero_raises_error(self, calc):
with pytest.raises(ZeroDivisionError):
calc.divide(10, 0)
@pytest.mark.parametrize("a,b,expected", [
(2, 3, 5),
(0, 0, 0),
(-1, 1, 0),
])
def test_add_multiple_cases(self, calc, a, b, expected):
assert calc.add(a, b) == expected
JavaScript (Jest)
describe('Calculator', () => {
let calc;
beforeEach(() => {
calc = new Calculator();
});
test('adds two numbers', () => {
expect(calc.add(2, 3)).toBe(5);
});
test('throws error on division by zero', () => {
expect(() => calc.divide(10, 0)).toThrow();
});
test.each([
[2, 3, 5],
[0, 0, 0],
[-1, 1, 0],
])('add(%i, %i) returns %i', (a, b, expected) => {
expect(calc.add(a, b)).toBe(expected);
});
});
Shell Scripts (bats)
#!/usr/bin/env bats
@test "script exits with status 0 on success" {
run ./myscript.sh input.txt
[ "$status" -eq 0 ]
}
@test "script produces expected output" {
run ./myscript.sh input.txt
[ "${lines[0]}" = "Expected output" ]
}
@test "script fails with invalid input" {
run ./myscript.sh nonexistent.txt
[ "$status" -ne 0 ]
[[ "$output" =~ "Error" ]]
}
Mocking and Stubbing
When to Mock
- External services (APIs, databases)
- Slow operations
- Non-deterministic behavior (random, time)
- Hard-to-trigger scenarios (errors)
Python Mocking
from unittest.mock import Mock, patch, MagicMock
# Mock an object
mock_db = Mock()
mock_db.get_user.return_value = {"id": 1, "name": "Test"}
# Patch a function
@patch('myapp.external_api_call')
def test_function(mock_api):
mock_api.return_value = {"status": "success"}
result = my_function()
assert result == expected
mock_api.assert_called_once_with(expected_arg)
JavaScript Mocking
// Jest mocking
jest.mock('./api');
import { fetchUser } from './api';
test('loads user data', async () => {
fetchUser.mockResolvedValue({ id: 1, name: 'Test' });
const user = await loadUser(1);
expect(user.name).toBe('Test');
expect(fetchUser).toHaveBeenCalledWith(1);
});
Integration Testing
Database Testing
import pytest
from myapp import create_app, db
@pytest.fixture
def app():
app = create_app('testing')
with app.app_context():
db.create_all()
yield app
db.session.remove()
db.drop_all()
def test_user_can_be_saved_to_database(app):
user = User(email='test@example.com')
db.session.add(user)
db.session.commit()
retrieved = User.query.filter_by(email='test@example.com').first()
assert retrieved is not None
assert retrieved.email == 'test@example.com'
API Testing
def test_api_returns_user_list(client):
response = client.get('/api/users')
assert response.status_code == 200
assert len(response.json) > 0
assert 'email' in response.json[0]
End-to-End Testing
Web Testing (Playwright/Selenium)
// Playwright example
test('user can login', async ({ page }) => {
await page.goto('https://example.com');
await page.fill('[name="email"]', 'user@example.com');
await page.fill('[name="password"]', 'password123');
await page.click('button[type="submit"]');
await expect(page.locator('.welcome')).toContainText('Welcome back');
});
Test Fixtures and Factories
Fixtures
@pytest.fixture
def sample_user():
return User(
email='test@example.com',
name='Test User'
)
@pytest.fixture
def authenticated_client(client, sample_user):
client.login(sample_user)
return client
Factories
import factory
class UserFactory(factory.Factory):
class Meta:
model = User
email = factory.Sequence(lambda n: f'user{n}@example.com')
name = factory.Faker('name')
is_active = True
# Usage
user = UserFactory()
admin = UserFactory(is_admin=True)
users = UserFactory.create_batch(10)
Testing Best Practices
Do's
- ✅ Write tests first (TDD)
- ✅ Test behavior, not implementation
- ✅ Keep tests simple and readable
- ✅ Use descriptive test names
- ✅ Test edge cases and errors
- ✅ Keep tests fast
- ✅ Make tests independent
- ✅ Use fixtures for common setup
Don'ts
- ❌ Test framework/library code
- ❌ Test multiple things in one test
- ❌ Use random data without seeding
- ❌ Depend on test execution order
- ❌ Leave commented-out tests
- ❌ Skip tests without good reason
- ❌ Have flaky tests
Test Organization
project/
├── src/
│ └── myapp/
│ ├── __init__.py
│ └── calculator.py
└── tests/
├── __init__.py
├── conftest.py # Shared fixtures
├── unit/
│ └── test_calculator.py
├── integration/
│ └── test_database.py
└── e2e/
└── test_user_flow.py
Code Coverage
Generate Coverage Report
# Python
pytest --cov=myapp --cov-report=html
# JavaScript
jest --coverage
# View coverage
open htmlcov/index.html
Coverage Goals
- Critical business logic: 100%
- Most code: 80%+
- E2E scripts: Lower coverage OK
- Don't sacrifice test quality for coverage numbers
Common Testing Patterns
Testing Exceptions
def test_raises_error():
with pytest.raises(ValueError, match="Invalid input"):
function_that_raises("bad")
Testing Async Code
@pytest.mark.asyncio
async def test_async_function():
result = await async_function()
assert result == expected
Testing Time-Dependent Code
@patch('myapp.datetime')
def test_time_dependent(mock_datetime):
mock_datetime.now.return_value = datetime(2024, 1, 1)
result = function_using_time()
assert result == expected
Continuous Integration
# .github/workflows/test.yml
name: Tests
on: [push, pull_request]
jobs:
test:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- name: Run tests
run: |
pip install -r requirements-dev.txt
pytest --cov --cov-report=xml
- name: Upload coverage
uses: codecov/codecov-action@v2
Remember: Good tests are your safety net. They give you confidence to refactor and add features. Invest time in writing quality tests!
Repository

einverne
Author
einverne/dotfiles/claude/skills/test-expert
109
Stars
19
Forks
Updated6d ago
Added1w ago