Marketplace
pydantic-ai-model-integration
Configure LLM providers, use fallback models, handle streaming, and manage model settings in PydanticAI. Use when selecting models, implementing resilience, or optimizing API calls.
$ インストール
git clone https://github.com/existential-birds/beagle /tmp/beagle && cp -r /tmp/beagle/skills/pydantic-ai-model-integration ~/.claude/skills/beagle// tip: Run this command in your terminal to install the skill
SKILL.md
name: pydantic-ai-model-integration description: Configure LLM providers, use fallback models, handle streaming, and manage model settings in PydanticAI. Use when selecting models, implementing resilience, or optimizing API calls.
PydanticAI Model Integration
Provider Model Strings
Format: provider:model-name
from pydantic_ai import Agent
# OpenAI
Agent('openai:gpt-4o')
Agent('openai:gpt-4o-mini')
Agent('openai:o1-preview')
# Anthropic
Agent('anthropic:claude-sonnet-4-5')
Agent('anthropic:claude-haiku-4-5')
# Google (API Key)
Agent('google-gla:gemini-2.0-flash')
Agent('google-gla:gemini-2.0-pro')
# Google (Vertex AI)
Agent('google-vertex:gemini-2.0-flash')
# Groq
Agent('groq:llama-3.3-70b-versatile')
Agent('groq:mixtral-8x7b-32768')
# Mistral
Agent('mistral:mistral-large-latest')
# Other providers
Agent('cohere:command-r-plus')
Agent('bedrock:anthropic.claude-3-sonnet')
Model Settings
from pydantic_ai import Agent
from pydantic_ai.settings import ModelSettings
agent = Agent(
'openai:gpt-4o',
model_settings=ModelSettings(
temperature=0.7,
max_tokens=1000,
top_p=0.9,
timeout=30.0, # Request timeout
)
)
# Override per-run
result = await agent.run(
'Generate creative text',
model_settings=ModelSettings(temperature=1.0)
)
Fallback Models
Chain models for resilience:
from pydantic_ai.models.fallback import FallbackModel
# Try models in order until one succeeds
fallback = FallbackModel(
'openai:gpt-4o',
'anthropic:claude-sonnet-4-5',
'google-gla:gemini-2.0-flash'
)
agent = Agent(fallback)
result = await agent.run('Hello')
# Custom fallback conditions
from pydantic_ai.exceptions import ModelAPIError
def should_fallback(error: Exception) -> bool:
"""Only fallback on rate limits or server errors."""
if isinstance(error, ModelAPIError):
return error.status_code in (429, 500, 502, 503)
return False
fallback = FallbackModel(
'openai:gpt-4o',
'anthropic:claude-sonnet-4-5',
fallback_on=should_fallback
)
Streaming Responses
async def stream_response():
async with agent.run_stream('Tell me a story') as response:
# Stream text output
async for chunk in response.stream_output():
print(chunk, end='', flush=True)
# Access final result after streaming
print(f"\nTokens used: {response.usage().total_tokens}")
Streaming with Structured Output
from pydantic import BaseModel
class Story(BaseModel):
title: str
content: str
moral: str
agent = Agent('openai:gpt-4o', output_type=Story)
async with agent.run_stream('Write a fable') as response:
# For structured output, stream_output yields partial JSON
async for partial in response.stream_output():
print(partial) # Partial Story object as parsed
# Final validated result
story = response.output
Dynamic Model Selection
import os
# Environment-based selection
model = os.getenv('PYDANTIC_AI_MODEL', 'openai:gpt-4o')
agent = Agent(model)
# Runtime model override
result = await agent.run(
'Hello',
model='anthropic:claude-sonnet-4-5' # Override default
)
# Context manager override
with agent.override(model='google-gla:gemini-2.0-flash'):
result = agent.run_sync('Hello')
Deferred Model Checking
Delay model validation for testing:
# Default: Validates model immediately (checks env vars)
agent = Agent('openai:gpt-4o')
# Deferred: Validates only on first run
agent = Agent('openai:gpt-4o', defer_model_check=True)
# Useful for testing with override
with agent.override(model=TestModel()):
result = agent.run_sync('Test') # No OpenAI key needed
Usage Tracking
result = await agent.run('Hello')
# Request usage (last request)
usage = result.usage()
print(f"Input tokens: {usage.input_tokens}")
print(f"Output tokens: {usage.output_tokens}")
print(f"Total tokens: {usage.total_tokens}")
# Full run usage (all requests in run)
run_usage = result.run_usage()
print(f"Total requests: {run_usage.requests}")
Usage Limits
from pydantic_ai.usage import UsageLimits
# Limit token usage
result = await agent.run(
'Generate content',
usage_limits=UsageLimits(
total_tokens=1000,
request_tokens=500,
response_tokens=500,
)
)
Provider-Specific Features
OpenAI
from pydantic_ai.models.openai import OpenAIModel
model = OpenAIModel(
'gpt-4o',
api_key='your-key', # Or use OPENAI_API_KEY env var
base_url='https://custom-endpoint.com' # For Azure, proxies
)
Anthropic
from pydantic_ai.models.anthropic import AnthropicModel
model = AnthropicModel(
'claude-sonnet-4-5',
api_key='your-key' # Or ANTHROPIC_API_KEY
)
Common Model Patterns
| Use Case | Recommendation |
|---|---|
| General purpose | openai:gpt-4o or anthropic:claude-sonnet-4-5 |
| Fast/cheap | openai:gpt-4o-mini or anthropic:claude-haiku-4-5 |
| Long context | anthropic:claude-sonnet-4-5 (200k) or google-gla:gemini-2.0-flash |
| Reasoning | openai:o1-preview |
| Cost-sensitive prod | FallbackModel with fast model first |
Repository

existential-birds
Author
existential-birds/beagle/skills/pydantic-ai-model-integration
5
Stars
1
Forks
Updated1w ago
Added1w ago