Marketplace
python
Python programming patterns and best practices
$ インストール
git clone https://github.com/miles990/claude-software-skills /tmp/claude-software-skills && cp -r /tmp/claude-software-skills/programming-languages/python ~/.claude/skills/claude-software-skills// tip: Run this command in your terminal to install the skill
SKILL.md
name: python description: Python programming patterns and best practices domain: programming-languages version: 1.1.0 tags: [python, typing, async, dataclasses, decorators] triggers: keywords: primary: [python, py, pandas, numpy, pip, venv] secondary: [asyncio, typing, dataclass, decorator, pytest] context_boost: [data, analysis, scripting, automation, backend] context_penalty: [java, csharp, golang] priority: high
Python
Overview
Modern Python development patterns including type hints, async programming, and Pythonic idioms.
Type Hints
Basic Types
from typing import (
Optional, Union, List, Dict, Set, Tuple,
TypeVar, Generic, Callable, Any,
Literal, TypedDict, Protocol
)
from dataclasses import dataclass
from datetime import datetime
# Basic type hints
def greet(name: str) -> str:
return f"Hello, {name}!"
# Optional (can be None)
def find_user(user_id: str) -> Optional['User']:
return users.get(user_id)
# Union types
def process(value: Union[str, int]) -> str:
return str(value)
# Python 3.10+ union syntax
def process_new(value: str | int | None) -> str:
return str(value) if value else ""
# Collections
def process_items(
items: List[str],
mapping: Dict[str, int],
unique: Set[str],
pair: Tuple[str, int]
) -> None:
pass
# Python 3.9+ built-in generics
def process_items_new(
items: list[str],
mapping: dict[str, int],
unique: set[str]
) -> None:
pass
Advanced Types
# TypeVar for generics
T = TypeVar('T')
K = TypeVar('K')
V = TypeVar('V')
def first(items: list[T]) -> T | None:
return items[0] if items else None
# Generic classes
class Repository(Generic[T]):
def __init__(self) -> None:
self._items: dict[str, T] = {}
def get(self, id: str) -> T | None:
return self._items.get(id)
def save(self, id: str, item: T) -> None:
self._items[id] = item
# TypedDict for structured dicts
class UserDict(TypedDict):
id: str
name: str
email: str
age: int # Required
nickname: str # Required
class PartialUserDict(TypedDict, total=False):
nickname: str # Optional
# Literal types
Mode = Literal["read", "write", "append"]
def open_file(path: str, mode: Mode) -> None:
pass
# Protocol (structural typing)
class Readable(Protocol):
def read(self) -> str: ...
def process_readable(source: Readable) -> str:
return source.read()
# Callable types
Handler = Callable[[str, int], bool]
AsyncHandler = Callable[[str], 'Awaitable[bool]']
def register_handler(handler: Handler) -> None:
pass
Dataclasses
from dataclasses import dataclass, field, asdict, astuple
from typing import ClassVar
from datetime import datetime
@dataclass
class User:
id: str
email: str
name: str
created_at: datetime = field(default_factory=datetime.now)
tags: list[str] = field(default_factory=list)
_cache: dict = field(default_factory=dict, repr=False, compare=False)
# Class variable (not instance field)
MAX_TAGS: ClassVar[int] = 10
def __post_init__(self):
# Validation after init
if len(self.tags) > self.MAX_TAGS:
raise ValueError(f"Too many tags (max {self.MAX_TAGS})")
# Frozen (immutable)
@dataclass(frozen=True)
class Point:
x: float
y: float
def distance_from_origin(self) -> float:
return (self.x ** 2 + self.y ** 2) ** 0.5
# Slots for memory efficiency
@dataclass(slots=True)
class LightweightUser:
id: str
name: str
# Convert to dict/tuple
user = User(id="1", email="test@example.com", name="Test")
user_dict = asdict(user)
user_tuple = astuple(user)
Decorators
from functools import wraps
from typing import TypeVar, Callable, ParamSpec
import time
P = ParamSpec('P')
R = TypeVar('R')
# Basic decorator
def timer(func: Callable[P, R]) -> Callable[P, R]:
@wraps(func)
def wrapper(*args: P.args, **kwargs: P.kwargs) -> R:
start = time.perf_counter()
result = func(*args, **kwargs)
elapsed = time.perf_counter() - start
print(f"{func.__name__} took {elapsed:.4f}s")
return result
return wrapper
# Decorator with arguments
def retry(max_attempts: int = 3, delay: float = 1.0):
def decorator(func: Callable[P, R]) -> Callable[P, R]:
@wraps(func)
def wrapper(*args: P.args, **kwargs: P.kwargs) -> R:
last_exception: Exception | None = None
for attempt in range(max_attempts):
try:
return func(*args, **kwargs)
except Exception as e:
last_exception = e
if attempt < max_attempts - 1:
time.sleep(delay)
raise last_exception
return wrapper
return decorator
# Class decorator
def singleton(cls):
instances = {}
@wraps(cls)
def get_instance(*args, **kwargs):
if cls not in instances:
instances[cls] = cls(*args, **kwargs)
return instances[cls]
return get_instance
# Usage
@timer
@retry(max_attempts=3, delay=0.5)
def fetch_data(url: str) -> dict:
# ... fetch logic
pass
@singleton
class Database:
def __init__(self, connection_string: str):
self.connection_string = connection_string
Async Programming
import asyncio
from typing import AsyncIterator
import aiohttp
# Async function
async def fetch_url(url: str) -> str:
async with aiohttp.ClientSession() as session:
async with session.get(url) as response:
return await response.text()
# Parallel execution
async def fetch_all(urls: list[str]) -> list[str]:
tasks = [fetch_url(url) for url in urls]
return await asyncio.gather(*tasks)
# With error handling
async def fetch_all_safe(urls: list[str]) -> list[str | None]:
tasks = [fetch_url(url) for url in urls]
results = await asyncio.gather(*tasks, return_exceptions=True)
return [r if isinstance(r, str) else None for r in results]
# Async context manager
class AsyncDatabase:
async def __aenter__(self) -> 'AsyncDatabase':
await self.connect()
return self
async def __aexit__(self, exc_type, exc_val, exc_tb) -> None:
await self.disconnect()
async def connect(self) -> None:
print("Connecting...")
async def disconnect(self) -> None:
print("Disconnecting...")
# Async generator
async def paginate(
fetch_page: Callable[[int], 'Awaitable[list[T]]']
) -> AsyncIterator[T]:
page = 1
while True:
items = await fetch_page(page)
if not items:
break
for item in items:
yield item
page += 1
# Using async for
async def process_all_items():
async for item in paginate(fetch_page):
await process_item(item)
# Semaphore for rate limiting
async def fetch_with_limit(urls: list[str], max_concurrent: int = 10):
semaphore = asyncio.Semaphore(max_concurrent)
async def fetch_limited(url: str) -> str:
async with semaphore:
return await fetch_url(url)
return await asyncio.gather(*[fetch_limited(url) for url in urls])
Context Managers
from contextlib import contextmanager, asynccontextmanager
from typing import Generator, AsyncGenerator
# Class-based context manager
class Timer:
def __init__(self, name: str):
self.name = name
self.start: float = 0
self.elapsed: float = 0
def __enter__(self) -> 'Timer':
self.start = time.perf_counter()
return self
def __exit__(self, exc_type, exc_val, exc_tb) -> None:
self.elapsed = time.perf_counter() - self.start
print(f"{self.name}: {self.elapsed:.4f}s")
# Generator-based context manager
@contextmanager
def timer(name: str) -> Generator[None, None, None]:
start = time.perf_counter()
try:
yield
finally:
elapsed = time.perf_counter() - start
print(f"{name}: {elapsed:.4f}s")
# Async context manager
@asynccontextmanager
async def async_timer(name: str) -> AsyncGenerator[None, None]:
start = time.perf_counter()
try:
yield
finally:
elapsed = time.perf_counter() - start
print(f"{name}: {elapsed:.4f}s")
# Usage
with timer("operation"):
do_something()
async with async_timer("async_operation"):
await do_something_async()
Itertools and Generators
from itertools import (
chain, islice, groupby, takewhile, dropwhile,
combinations, permutations, product, accumulate
)
from typing import Iterator, Iterable
# Generator function
def fibonacci() -> Iterator[int]:
a, b = 0, 1
while True:
yield a
a, b = b, a + b
# Take first n
first_10_fib = list(islice(fibonacci(), 10))
# Generator expression
squares = (x ** 2 for x in range(10))
# Chain multiple iterables
all_items = chain(list1, list2, list3)
# Group by
data = [
{"type": "a", "value": 1},
{"type": "a", "value": 2},
{"type": "b", "value": 3},
]
for key, group in groupby(sorted(data, key=lambda x: x["type"]), key=lambda x: x["type"]):
print(f"{key}: {list(group)}")
# Batching
def batch(iterable: Iterable[T], size: int) -> Iterator[list[T]]:
iterator = iter(iterable)
while batch := list(islice(iterator, size)):
yield batch
# Sliding window
def sliding_window(iterable: Iterable[T], size: int) -> Iterator[tuple[T, ...]]:
from collections import deque
iterator = iter(iterable)
window = deque(islice(iterator, size), maxlen=size)
if len(window) == size:
yield tuple(window)
for item in iterator:
window.append(item)
yield tuple(window)
Error Handling
from typing import TypeVar, Generic
from dataclasses import dataclass
T = TypeVar('T')
E = TypeVar('E', bound=Exception)
# Custom exceptions
class AppError(Exception):
def __init__(self, message: str, code: str):
super().__init__(message)
self.code = code
class ValidationError(AppError):
def __init__(self, message: str, fields: dict[str, list[str]]):
super().__init__(message, "VALIDATION_ERROR")
self.fields = fields
# Result type pattern
@dataclass
class Ok(Generic[T]):
value: T
def is_ok(self) -> bool:
return True
def is_err(self) -> bool:
return False
@dataclass
class Err(Generic[E]):
error: E
def is_ok(self) -> bool:
return False
def is_err(self) -> bool:
return True
Result = Ok[T] | Err[E]
def parse_int(s: str) -> Result[int, ValueError]:
try:
return Ok(int(s))
except ValueError as e:
return Err(e)
# Exception chaining
try:
process_data()
except ValueError as e:
raise AppError("Failed to process data", "PROCESS_ERROR") from e
Related Skills
- [[ai-ml-integration]] - ML/AI with Python
- [[backend]] - FastAPI/Django
- [[automation-scripts]] - Scripting and automation
Repository

miles990
Author
miles990/claude-software-skills/programming-languages/python
0
Stars
0
Forks
Updated5h ago
Added1w ago