google-adk
Develop agentic software and multi-agent systems using Google ADK in Python
$ インストール
git clone https://github.com/vladm3105/aidoc-flow-framework /tmp/aidoc-flow-framework && cp -r /tmp/aidoc-flow-framework/.claude/skills/google-adk ~/.claude/skills/aidoc-flow-framework// tip: Run this command in your terminal to install the skill
title: "google-adk: Develop agentic software and multi-agent systems using Google ADK in Python" name: google-adk description: Develop agentic software and multi-agent systems using Google ADK in Python tags:
- sdd-workflow
- shared-architecture
- domain-specific custom_fields: layer: null artifact_type: null architecture_approaches: [ai-agent-based, traditional-8layer] priority: shared development_status: active skill_category: domain-specific upstream_artifacts: [] downstream_artifacts: []
Google Agent Development Kit (ADK) Skill
Purpose
Provide specialized guidance for developing agentic applications and multi-agent systems using Google's Agent Development Kit (ADK). Enable AI assistants to design agents, build tools, orchestrate multi-agent workflows, implement memory/state management, and deploy agent-based applications following code-first development patterns.
When to Use This Skill
Invoke this skill when:
- Building conversational AI agents with tool integration
- Creating multi-agent orchestration systems
- Developing workflow agents (sequential, parallel, iterative)
- Implementing custom tools for agents
- Designing agent architectures for complex tasks
- Deploying agent applications to production
- Evaluating agent performance and behavior
- Implementing human-in-the-loop patterns
Do NOT use this skill for:
- Generic Python development (use Python-specific skills)
- Simple REST API development (ADK is for agentic systems)
- Frontend development (ADK is backend agent framework)
- Direct LLM API usage without agent orchestration (use LLM provider SDKs)
- Non-Python agent frameworks (LangChain, CrewAI, AutoGPT - different patterns)
Core ADK Concepts
Platform Architecture
Framework Philosophy:
- Code-first approach - Define agents in Python code (not YAML/JSON configs)
- Model-agnostic - Optimized for Gemini but supports other LLMs
- Composable - Build complex systems from simple agent primitives
- Observable - Built-in integration with tracing and monitoring tools
Supported Languages:
- Python (primary, most mature) -
google-adkpackage - Go (available) -
adk-gorepository - Java (available) -
adk-javarepository
Runtime Environment:
- Python 3.9+ required
- Agent Engine for deployment (containerized execution)
- Web UI for development/testing (Angular + FastAPI)
- CLI for evaluation and deployment operations
Agent Types and Hierarchy
1. LlmAgent (Dynamic, model-driven)
Use for:
- Conversational interfaces
- Decision-making with uncertainty
- Natural language understanding
- Creative tasks (content generation)
- Contextual reasoning
Characteristics:
- Uses LLM for decision-making
- Non-deterministic execution
- Tool selection driven by model
- Handles ambiguous inputs
2. Workflow Agents (Deterministic, programmatic)
Sequential Agent:
- Executes tools in fixed order
- Use for: Multi-step processes with dependencies
- Example: Data pipeline (fetch → transform → load)
Parallel Agent:
- Executes multiple tools concurrently
- Use for: Independent operations requiring aggregation
- Example: Multi-source data gathering
Loop Agent:
- Repeats execution until condition met
- Use for: Iterative refinement, convergence tasks
- Example: Generator-critic pattern
3. Custom Agents (User-defined logic)
Use for:
- Domain-specific orchestration
- Complex state machines
- Integration with existing systems
- Specialized execution patterns
Agent Composition:
- Agents can contain sub-agents (hierarchical)
- Parent agent coordinates child agents
- Supports multi-level nesting
Tool Ecosystem
Tool Categories:
-
Built-in Tools:
- Search - Web search via Google Search API
- Code Execution - Python code interpreter (sandboxed)
- Google Cloud tools - Vertex AI, BigQuery, Cloud Storage
-
Custom Function Tools:
- Python functions wrapped as tools
- Automatic schema generation from type hints
- Supports async functions
-
OpenAPI Tools:
- Auto-generate from OpenAPI/Swagger specs
- HTTP-based service integration
-
MCP (Model Context Protocol) Tools:
- Integration with MCP servers
- Cross-framework tool sharing
Tool Attributes:
- Name - Unique identifier
- Description - Natural language explanation for LLM
- Parameters - JSON schema defining inputs
- Function - Execution logic
- Confirmation - Optional human-in-the-loop approval
Memory and State Management
Session Management:
- Agent maintains conversation history
- Automatic context window management
- Configurable history retention
State Persistence:
- Custom state objects per agent
- Serialization support (JSON, pickle)
- Database integration for long-term storage
Context Caching:
- Reduces token usage for repeated context
- Automatic cache invalidation
- Configurable cache TTL
Agent Development Methodology
Planning Phase
Step 1: Define Agent Purpose
- Primary objective (single responsibility)
- Input/output format
- Success criteria
- Failure modes
Step 2: Identify Required Tools
Decision criteria:
- Use built-in tools when available (Search, Code Execution)
- Create custom functions for simple operations (<100 lines)
- Use OpenAPI tools for existing REST APIs
- Use MCP tools for cross-framework compatibility
Step 3: Select Agent Type
START: What's the agent's decision pattern?
│
├─> Requires natural language reasoning? ─Yes─> LlmAgent ★
│
├─> Fixed sequence of steps?
│ └─> Sequential Workflow Agent ★
│
├─> Independent parallel operations?
│ └─> Parallel Workflow Agent ★
│
├─> Iterative refinement needed?
│ └─> Loop Workflow Agent ★
│
└─> Custom orchestration logic?
└─> Custom Agent ★
Step 4: Design Multi-Agent Architecture (if needed)
Patterns:
- Coordinator/Dispatcher - Central agent routes to specialists
- Sequential Pipeline - Output of Agent A → Input of Agent B
- Parallel Fan-Out/Gather - Distribute work, aggregate results
- Hierarchical Decomposition - Break complex task into subtasks
Implementation Phase
Agent Implementation Examples:
[See Code Examples: examples/google_adk_agent_implementation.py]
Key agent patterns demonstrated:
- LlmAgent -
create_weather_assistant()- Conversational agent with custom tools - SequentialAgent -
create_data_pipeline()- Ordered execution (fetch → transform → save) - ParallelAgent -
create_market_researcher()- Concurrent tool execution - LoopAgent -
create_content_generator()- Iterative refinement with break conditions - Session Management -
create_stateful_session()- Multi-turn conversation with history
Testing Phase
Web UI Testing:
# Start API server
adk api_server --port 8000
# Start web UI (separate terminal)
cd adk-web
npm install
npm start
# Access: http://localhost:4200
Programmatic Testing:
# Unit test for agent
def test_weather_agent():
agent = create_weather_agent()
response = agent.run("Weather in NYC?")
assert "weather" in response.content.lower()
assert response.success is True
# Integration test with mock tools
def test_pipeline_agent():
agent = create_pipeline_agent(mock_tools=True)
result = agent.run({"input": "test_data"})
assert result["status"] == "completed"
Evaluation Framework:
from google.adk.evaluation import evaluate_agent
# Criteria-based evaluation
results = evaluate_agent(
agent=my_agent,
test_cases=[
{"input": "What's 2+2?", "expected_output": "4"},
{"input": "Explain quantum computing", "criteria": "mentions_qubits"}
],
evaluator_model="gemini-2.0-flash"
)
print(f"Pass rate: {results.pass_rate}")
print(f"Average score: {results.avg_score}")
Tool Development
[See Code Examples: examples/google_adk_tools_example.py]
Custom Function Tools
Examples demonstrated:
- Basic Function Tool -
calculate_tax()- Simple tool with type hints - Async Tool -
fetch_user_data()- Asynchronous API calls - HITL Confirmation -
send_email(),delete_user_account()- Human approval required - Input Validation -
send_email_tool()- Email format validation and sanitization - Retry Logic -
fetch_external_data()- Automatic retry with exponential backoff - Rate Limiting -
call_external_api()- Decorator-based rate limiting - Error Handling -
fetch_stock_price()- Graceful degradation on failures
OpenAPI Tools
Integration Pattern:
- Load tools from OpenAPI spec URL
- Optional tool filtering for specific operations
- Automatic schema generation from spec
[See:
create_api_agent()in examples/google_adk_tools_example.py]
MCP Tool Integration
Integration Pattern:
- Connect to MCP server endpoint
- Import tools for cross-framework compatibility
[See:
create_mcp_agent()in examples/google_adk_tools_example.py]
Multi-Agent Orchestration
[See Code Examples: examples/google_adk_multi_agent.py]
Multi-Agent Patterns
Pattern 1: Coordinator/Dispatcher (Complexity: 4)
- Use case: Route user requests to specialized agents
- Function:
create_coordinator_system()- Weather + Finance specialists
Pattern 2: Sequential Pipeline (Complexity: 3)
- Use case: Multi-stage processing with dependencies
- Function:
create_content_pipeline()- Research → Write → Edit
Pattern 3: Parallel Fan-Out/Gather (Complexity: 4)
- Use case: Aggregate results from multiple sources
- Function:
create_market_analysis_system()- Technical + Fundamental + Sentiment analysis
Pattern 4: Hierarchical Decomposition (Complexity: 5)
- Use case: Break complex tasks into manageable subtasks
- Function:
create_project_management_system()- Multi-level agent hierarchy
Pattern 5: Generator-Critic Loop (Complexity: 4)
- Use case: Iterative refinement with feedback
- Function:
create_quality_content_system()- Generate → Critique → Refine
Pattern 6: Human-in-the-Loop (HITL) (Complexity: 3)
- Use case: Critical decisions require human approval
- Function:
create_account_management_agent()- Confirmation before deletion
Pattern 7: State Management
- Use case: Persistent user context across sessions
- Class:
StatefulAgent- In-memory state storage with history
Pattern 8: Database Persistence
- Use case: Long-term state storage
- Functions:
save_state(),load_state()- PostgreSQL-backed persistence
Memory and State Management
[See Code Examples: examples/google_adk_multi_agent.py - State Management section]
Session Management
Basic Session Pattern:
- Multi-turn conversation with history retention
- Automatic context window management
- Configurable history limits
[See: create_stateful_session() in examples/google_adk_agent_implementation.py]
State Persistence
Custom State Object:
- In-memory state storage per user
- Dataclass-based state modeling
- Conversation history tracking
[See: StatefulAgent class in examples/google_adk_multi_agent.py]
Database Persistence:
- Long-term state storage with SQLAlchemy
- JSON-serialized state data
- PostgreSQL/MySQL support
[See: save_state(), load_state() functions in examples/google_adk_multi_agent.py]
Deployment Options
[See Code Examples: examples/google_adk_deployment.py]
Agent Engine (Managed Service)
Deployment Commands:
pip install google-adk[cli]
adk auth login
adk deploy --agent-file agent.py --agent-name my_agent --project-id my-gcp-project --region us-central1
[See: create_production_agent() for configuration example]
Cloud Run Deployment
Components:
- FastAPI server with agent endpoints
- Dockerfile for containerization
- Health check and error handling
- Environment configuration
[See: FastAPI app implementation, Dockerfile reference, deployment commands in examples/google_adk_deployment.py]
Docker Containerization
Self-Hosted Options:
- Docker Compose with Redis
- Single container deployment
- Environment variable configuration
[See: docker-compose.yml reference, deployment commands in examples/google_adk_deployment.py]
Resource Requirements
| Agent Complexity | CPU | RAM | Concurrent Requests |
|---|---|---|---|
| Simple LlmAgent | 1 core | 512MB | 10 |
| Workflow Agent | 2 cores | 1GB | 20 |
| Multi-Agent (3-5 agents) | 4 cores | 2GB | 10 |
| Complex Multi-Agent (>5) | 8 cores | 4GB | 5 |
Evaluation and Testing
[See Code Examples: examples/google_adk_deployment.py - Evaluation endpoint]
Criteria-Based Evaluation
Pattern:
- Define custom evaluation criteria (accuracy, helpfulness, etc.)
- Run test cases against agent
- Analyze pass rate and scores
[See: evaluate_agent_endpoint() in examples/google_adk_deployment.py]
User Simulation Evaluation
Pattern:
- Simulate user interactions with defined goals
- Track goal completion rate
- Measure average turns to completion
[See documentation for UserSimulator examples]
Best Practices
[See Code Examples: examples/google_adk_tools_example.py - Tool Design Best Practices section]
Agent Instruction Writing
Effective Patterns:
- Clear role and responsibilities
- Structured format with constraints
- Specific tool usage guidance
- Example interactions
[See: GOOD vs BAD examples at end of examples/google_adk_tools_example.py]
Tool Design Principles
Key Principles:
- Single Responsibility - One clear purpose per tool
- Descriptive Naming - Clear action and object naming
- Type Hints - Complete type annotations for all parameters
[See: Tool design examples at end of examples/google_adk_tools_example.py]
Error Handling
Strategies:
- Graceful Degradation - Return error messages instead of raising exceptions
- Retry Logic - Automatic retry with exponential backoff
- Input Validation - Validate and sanitize all inputs
[See: fetch_stock_price(), fetch_external_data(), send_email_tool() in examples/google_adk_tools_example.py]
Security and Safety
Implementation:
- Input Validation - Email format validation, length limits
- Rate Limiting - Decorator-based request throttling
- Sanitization - Remove dangerous HTML/script content
[See: send_email_tool(), rate_limit() decorator in examples/google_adk_tools_example.py]
Performance Optimization
Async Tools:
- Automatic parallel execution for async functions
- Improved throughput for I/O-bound operations
[See: fetch_price(), create_portfolio_analyzer() in examples/google_adk_tools_example.py]
Quality Gates
Definition of Done: Agents
An agent is production-ready when:
-
Functionality:
- ✓ Agent completes primary objective on test cases
- ✓ Tool execution succeeds with valid inputs
- ✓ Error handling covers expected failure modes
- ✓ Multi-turn conversations maintain context
-
Performance:
- ✓ Response time <5 seconds for simple queries
- ✓ Response time <30 seconds for complex workflows
- ✓ Evaluation pass rate ≥80% on criteria
- ✓ Resource usage within deployment limits
-
Safety:
- ✓ Input validation on all tools
- ✓ High-risk actions require confirmation (HITL)
- ✓ No hardcoded credentials or API keys
- ✓ Rate limiting on external API calls
-
Observability:
- ✓ Logging configured for debugging
- ✓ Tracing enabled for multi-agent workflows
- ✓ Evaluation metrics tracked
- ✓ Error alerts configured
-
Documentation:
- ✓ Agent purpose and capabilities documented
- ✓ Tool descriptions clear and accurate
- ✓ Example usage provided
- ✓ Known limitations documented
Definition of Done: Tools
A tool is production-ready when:
-
Interface:
- ✓ Function has type hints for all parameters
- ✓ Docstring explains purpose, args, returns
- ✓ Parameter descriptions guide LLM selection
- ✓ Return values are JSON-serializable
-
Reliability:
- ✓ Error handling with informative messages
- ✓ Input validation prevents invalid operations
- ✓ Timeout configured for long-running operations
- ✓ Retry logic for transient failures
-
Testing:
- ✓ Unit tests cover success cases
- ✓ Unit tests cover error cases
- ✓ Integration tests with agent execution
- ✓ Performance benchmarks for expensive operations
Error Handling Guide
Common Issues and Resolutions
Issue: Agent doesn't call the right tool
- Cause: Tool description unclear or ambiguous
- Resolution:
# BAD: Vague description def process(data): """Process data.""" # Too generic # GOOD: Specific description def validate_email_format(email: str) -> bool: """Check if email address matches valid format (user@domain.com). Use this tool ONLY to validate email syntax, not to verify if email exists or is deliverable."""
Issue: Agent loops indefinitely
- Cause: No termination condition in Loop Agent
- Resolution:
# Add max_iterations and explicit break condition agent = LoopAgent( tools=[...], max_iterations=10, # Hard limit break_condition=lambda result: result.get("completed", False) )
Issue: "Tool execution failed" errors
- Cause: Tool raises unhandled exception
- Resolution:
def robust_tool(param: str) -> str: try: result = risky_operation(param) return f"Success: {result}" except SpecificError as e: return f"Operation failed: {e.message}" except Exception as e: logger.error(f"Unexpected error in robust_tool: {e}") return "Temporary service error, please try again"
Issue: Agent response is too slow
- Cause: Sequential tool calls when parallelization possible
- Resolution:
# Use Parallel Agent or async tools agent = ParallelAgent( tools=[tool1, tool2, tool3] # Execute concurrently )
Issue: Context limit exceeded
- Cause: Conversation history too long
- Resolution:
session = Session( agent=my_agent, max_history_turns=10, # Limit history context_window_tokens=30000 # Set explicit limit )
Issue: Deployment fails on Cloud Run
- Cause: Missing dependencies or environment variables
- Resolution:
# Ensure requirements.txt is complete pip freeze > requirements.txt # Set required environment variables gcloud run deploy my-agent \ --set-env-vars GOOGLE_API_KEY=your_key,AGENT_CONFIG=prod
Debugging Strategies
1. Enable verbose logging:
import logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger("google.adk")
logger.setLevel(logging.DEBUG)
2. Test tools independently:
# Test tool without agent
tool = Tool.from_function(my_function)
result = my_function("test_input")
print(f"Tool output: {result}")
3. Use web UI for interactive debugging:
adk api_server --debug
# Access UI at http://localhost:4200
# View tool calls, agent reasoning, response generation
4. Inspect agent execution trace:
response = agent.run("test query", return_trace=True)
print(response.trace) # Shows all tool calls and decisions
Complexity Ratings
| Task | Rating | Description |
|---|---|---|
| Simple LlmAgent with tools | 2 | Basic conversational agent |
| Sequential Workflow Agent | 2 | Fixed-order tool execution |
| Parallel Workflow Agent | 3 | Concurrent operations |
| Loop Workflow Agent | 3 | Iterative refinement |
| Custom Agent | 3 | User-defined orchestration |
| Coordinator/Dispatcher (2-3 agents) | 4 | Multi-agent routing |
| Sequential Pipeline (3+ agents) | 4 | Chained agent execution |
| Hierarchical Multi-Agent (>5 agents) | 5 | Complex nested architecture |
| Custom tool development | 2 | Python function wrapper |
| OpenAPI tool integration | 2 | Auto-generated from spec |
| MCP tool integration | 3 | Cross-framework tools |
| Deployment to Agent Engine | 2 | Managed deployment |
| Self-hosted Docker deployment | 3 | Container orchestration |
| Advanced evaluation framework | 4 | Custom criteria and simulation |
References
Official Documentation
- Main docs: https://google.github.io/adk-docs/
- Python SDK: https://github.com/google/adk-python
- Examples: https://github.com/google/adk-samples
- Web UI: https://github.com/google/adk-web
Python SDK Resources
- Installation:
pip install google-adk - API Reference: https://google.github.io/adk-docs/api/python/
- Quickstart Guide: https://google.github.io/adk-docs/quickstart/
Additional Languages
- Go SDK: https://github.com/google/adk-go
- Java SDK: https://github.com/google/adk-java
Community Resources
- GitHub Discussions: https://github.com/google/adk-python/discussions
- Issue Tracker: https://github.com/google/adk-python/issues
Related Skills
- For workflow automation: Use
n8nskill - For API design: Use
api-design-architectskill - For cloud deployment: Use
cloud-devops-expertskill - For Python development: Use Python-specific skills
- For LLM integration: Use model provider SDKs (OpenAI, Anthropic, etc.)
Version: 1.0.0 Last Updated: 2025-11-13 Complexity Rating: 3 (Moderate - requires agent architecture knowledge) Estimated Learning Time: 10-15 hours for proficiency
Repository
