baml-integration
Generic BAML patterns for type-safe LLM prompting. Covers schema design, DTO generation, client wrappers, and cross-language codegen. Framework-agnostic.
$ 설치
git clone https://github.com/Consiliency/treesitter-chunker /tmp/treesitter-chunker && cp -r /tmp/treesitter-chunker/.ai-dev-kit/skills/baml-integration ~/.claude/skills/treesitter-chunker// tip: Run this command in your terminal to install the skill
name: baml-integration description: "Generic BAML patterns for type-safe LLM prompting. Covers schema design, DTO generation, client wrappers, and cross-language codegen. Framework-agnostic."
BAML Integration Skill
Universal patterns for working with BAML (Boundary ML) in any project. BAML provides type-safe LLM prompting with automatic code generation for Python and TypeScript.
Design Principle
This skill is framework-generic. It provides universal BAML patterns that work in any codebase:
- NOT tailored to CodeGraph-DE, Book-Vetting, or any specific project
- Covers common patterns applicable across all BAML projects
- Specific domain types should go in project-specific skills
Variables
| Variable | Default | Description |
|---|---|---|
| BAML_SRC | baml_src | Directory containing BAML files |
| AUTO_GENERATE | true | Auto-run baml-cli generate on changes |
| STRICT_TYPES | true | Enforce strict type matching |
Instructions
MANDATORY - Follow the Workflow steps below in order.
- Understand BAML's role in the project
- Check existing BAML schema and types
- Follow type-safe patterns when working with LLMs
- Keep generated code in sync
Red Flags - STOP and Reconsider
If you're about to:
- Define LLM prompts without BAML types
- Manually parse LLM output instead of using BAML
- Skip running
baml-cli generateafter schema changes - Ignore type errors in generated clients
STOP -> Define BAML types -> Generate client -> Then proceed
Workflow
1. Understand Project BAML Setup
Check the BAML configuration:
# Find BAML source directory
find . -name "*.baml" -type f | head -5
# Check BAML client
ls -la baml_client/ || ls -la baml_src/baml_client/
# Check for generator config
cat baml_src/generators.baml 2>/dev/null
2. Review Existing Types
Before adding new types, review what exists:
// Common patterns in baml_src/types/
// Enums
enum TaskStatus {
PENDING
IN_PROGRESS
COMPLETED
FAILED
}
// Classes (DTOs)
class UserRequest {
query string
context string?
preferences map<string, string>?
}
class UserResponse {
answer string
confidence float
sources string[]
}
3. Define New Types
When adding LLM-powered features:
// 1. Define input type
class MyInput {
field1 string @description("Clear description")
field2 int @description("What this number represents")
}
// 2. Define output type
class MyOutput {
result string
metadata MyMetadata?
}
class MyMetadata {
confidence float
reasoning string
}
// 3. Define the function
function MyFunction(input: MyInput) -> MyOutput {
client GPT4
prompt #"
Given: {{ input.field1 }}
Count: {{ input.field2 }}
Provide your analysis.
{{ ctx.output_format }}
"#
}
4. Generate Client
After schema changes:
# Generate Python and TypeScript clients
baml-cli generate
# Or with specific config
baml-cli generate --config baml_src/generators.baml
5. Use Generated Client
# Python usage
from baml_client import b
async def process_request(input_data: dict):
result = await b.MyFunction(
input=MyInput(
field1=input_data["query"],
field2=input_data["count"]
)
)
return result.result
// TypeScript usage
import { b } from './baml_client';
async function processRequest(inputData: Record<string, unknown>) {
const result = await b.MyFunction({
field1: inputData.query as string,
field2: inputData.count as number
});
return result.result;
}
Cookbook
Schema Synchronization
- IF: Adding or modifying BAML types
- THEN: Read and execute
./cookbook/schema-sync.md
DTO Generation
- IF: Creating data transfer objects
- THEN: Read and execute
./cookbook/dto-generation.md
Client Wrapper Patterns
- IF: Wrapping BAML client for your service
- THEN: Read and execute
./cookbook/client-wrapper.md
Quick Reference
BAML Type Syntax
| Type | Syntax | Example |
|---|---|---|
| String | string | name string |
| Int | int | count int |
| Float | float | score float |
| Boolean | bool | active bool |
| Optional | type? | nickname string? |
| Array | type[] | tags string[] |
| Map | map<K, V> | metadata map<string, string> |
| Enum | enum Name | status TaskStatus |
| Class | class Name | Custom types |
| Union | type1 | type2 | result string | Error |
Function Attributes
| Attribute | Purpose | Example |
|---|---|---|
@description | Field documentation | @description("User's email") |
@alias | JSON key mapping | @alias("user_id") |
@skip | Exclude from output | @skip |
Client Selection
// Define clients in clients.baml
client GPT4 {
provider openai
options {
model "gpt-4-turbo"
temperature 0.7
}
}
client Claude {
provider anthropic
options {
model "claude-3-opus"
max_tokens 4096
}
}
// Use in functions
function MyFunc(input: Input) -> Output {
client GPT4 // or Claude
prompt #"..."#
}
Retry and Fallback
// Configure retries
client GPT4WithRetry {
provider openai
retry_policy {
max_retries 3
strategy exponential_backoff
}
}
// Fallback chain
client_fallback MainClient {
primary GPT4
fallback [Claude, GPT35Turbo]
}
Best Practices
1. Type Safety First
Always define explicit types:
// Good: Explicit types
class BookAnalysis {
title string
author string
summary string @description("2-3 sentence summary")
rating float @description("Rating from 0-5")
tags string[]
}
// Bad: Using generic types
function AnalyzeBook(text: string) -> string // Loses type safety
2. Use Descriptions
Add descriptions for LLM guidance:
class SearchQuery {
query string @description("The user's search query in natural language")
filters SearchFilters? @description("Optional filters to narrow results")
limit int @description("Maximum number of results to return, default 10")
}
3. Handle Errors
Define error types:
class Error {
code string
message string
}
function SafeAnalysis(input: Input) -> Output | Error {
// LLM can return either success or error
}
4. Version Your Schema
Keep schema versions aligned:
// baml_src/version.baml
// Schema version: 1.2.0
// Last updated: 2025-12-24
// Document breaking changes in CHANGELOG
Integration Points
With Schema Alignment
BAML types should align with database models:
// BAML type
class User {
id int
email string
name string?
}
// Should match SQLAlchemy model
class User(Base):
id: Mapped[int]
email: Mapped[str]
name: Mapped[str | None]
With API Schemas
BAML types can generate API response types:
// BAML response type
class APIResponse {
success bool
data ResponseData
error string?
}
// Use generated types in FastAPI
@app.post("/analyze")
async def analyze(request: Request) -> APIResponse:
result = await b.Analyze(request.data)
return APIResponse(success=True, data=result)
With Frontend Types
Generated TypeScript types work with frontend:
// Generated by BAML
import type { BookAnalysis } from './baml_client/types';
// Use in React component
function BookCard({ analysis }: { analysis: BookAnalysis }) {
return (
<div>
<h2>{analysis.title}</h2>
<p>{analysis.summary}</p>
<Rating value={analysis.rating} />
</div>
);
}
Troubleshooting
Generation Errors
# Check BAML syntax
baml-cli check
# Verbose generation
baml-cli generate --verbose
Type Mismatches
If LLM output doesn't match expected type:
- Check prompt for clarity
- Add more explicit
@descriptionhints - Consider using union types with Error
- Enable strict mode in client
Client Import Issues
# Ensure client is generated
try:
from baml_client import b
except ImportError:
# Run: baml-cli generate
raise RuntimeError("BAML client not generated. Run: baml-cli generate")
Repository
