Marketplace
pymc-fundamentals
Foundational knowledge for writing PyMC 5 models including syntax, distributions, sampling, and ArviZ diagnostics. Use when creating or reviewing PyMC models.
$ 설치
git clone https://github.com/choxos/BayesianAgent /tmp/BayesianAgent && cp -r /tmp/BayesianAgent/plugins/bayesian-modeling/skills/pymc-fundamentals ~/.claude/skills/BayesianAgent// tip: Run this command in your terminal to install the skill
SKILL.md
name: pymc-fundamentals description: Foundational knowledge for writing PyMC 5 models including syntax, distributions, sampling, and ArviZ diagnostics. Use when creating or reviewing PyMC models.
PyMC 5 Fundamentals
When to Use This Skill
- Writing new PyMC models in Python
- Understanding PyMC syntax and API
- Converting models from Stan/JAGS to PyMC
- Diagnosing sampling issues with ArviZ
Model Structure
import pymc as pm
import numpy as np
import arviz as az
with pm.Model() as model:
# 1. Priors
mu = pm.Normal("mu", mu=0, sigma=10)
sigma = pm.HalfNormal("sigma", sigma=1)
# 2. Likelihood
y_obs = pm.Normal("y_obs", mu=mu, sigma=sigma, observed=y_data)
# 3. Sample
trace = pm.sample(1000, tune=1000, return_inferencedata=True)
# 4. Diagnostics
az.summary(trace)
CRITICAL: SD Parameterization
PyMC uses SD (like Stan), NOT precision (like BUGS):
# PyMC (SD)
pm.Normal("x", mu=0, sigma=1) # sigma is SD
# BUGS equivalent would be tau = 1/sigma² = 1
Distribution Quick Reference
Continuous
pm.Normal("x", mu=0, sigma=1) # Normal
pm.HalfNormal("x", sigma=1) # Half-normal (>0)
pm.HalfCauchy("x", beta=2.5) # Half-Cauchy (>0)
pm.Exponential("x", lam=1) # Exponential
pm.Uniform("x", lower=0, upper=1) # Uniform
pm.Beta("x", alpha=1, beta=1) # Beta
pm.Gamma("x", alpha=2, beta=1) # Gamma
pm.StudentT("x", nu=3, mu=0, sigma=1) # Student-t
pm.LogNormal("x", mu=0, sigma=1) # Log-normal
pm.TruncatedNormal("x", mu=0, sigma=1, lower=0) # Truncated
Discrete
pm.Bernoulli("x", p=0.5) # Bernoulli
pm.Binomial("x", n=10, p=0.5) # Binomial
pm.Poisson("x", mu=5) # Poisson
pm.NegativeBinomial("x", mu=5, alpha=1) # Negative binomial
pm.Categorical("x", p=[0.3, 0.5, 0.2]) # Categorical
Multivariate
pm.MvNormal("x", mu=np.zeros(K), cov=np.eye(K))
pm.Dirichlet("x", a=np.ones(K))
pm.LKJCholeskyCov("chol", n=K, eta=2, sd_dist=pm.Exponential.dist(1))
Sampling
# Standard NUTS
trace = pm.sample(
draws=1000, # Samples per chain
tune=1000, # Warmup
chains=4,
cores=4,
target_accept=0.8, # Increase for divergences
random_seed=42,
return_inferencedata=True
)
# Variational inference (fast)
approx = pm.fit(n=30000, method="advi")
trace = approx.sample(1000)
# Predictive sampling
prior_pred = pm.sample_prior_predictive(500)
post_pred = pm.sample_posterior_predictive(trace)
Bayesian Workflow (Statistical Rethinking)
1. Prior Predictive Check
with model:
prior_pred = pm.sample_prior_predictive(500, random_seed=42)
az.plot_ppc(prior_pred, group="prior")
2. Fit Model
with model:
trace = pm.sample(1000, tune=1000, target_accept=0.9,
return_inferencedata=True)
3. Diagnostics
az.summary(trace, hdi_prob=0.89)
az.plot_trace(trace)
az.plot_rank_hist(trace) # Ranked histograms (preferred)
4. Posterior Predictive Check
with model:
post_pred = pm.sample_posterior_predictive(trace)
az.plot_ppc(post_pred, num_pp_samples=100)
5. Model Comparison
loo1 = az.loo(trace1)
loo2 = az.loo(trace2)
az.compare({"m1": trace1, "m2": trace2})
az.plot_khat(loo1) # k > 0.7 is problematic
pm.Deterministic for Tracking
Always track mu for plotting:
# Inside model
mu = pm.Deterministic("mu", alpha + pm.math.dot(X, beta))
# Access later
trace.posterior["mu"] # All samples of mu
Data Extraction Patterns
# Extract to DataFrame
trace_df = az.extract_dataset(trace).to_dataframe()
# Access specific parameters
post = az.extract_dataset(trace["posterior"])
mu_samples = post["mu"].values
# Get numpy arrays
alpha_values = trace.posterior["alpha"].values # (chains, draws)
HDI Visualization
# Compute mu at new x values
x_seq = np.linspace(x.min(), x.max(), 100)
mu_pred = post["alpha"] + post["beta"] * x_seq[:, None]
# Plot HDI bands
az.plot_hdi(x_seq, mu_pred.T, hdi_prob=0.89)
plt.scatter(x, y)
ArviZ Diagnostics
import arviz as az
# Configure defaults
az.rcParams["stats.hdi_prob"] = 0.89
# Summary table
summary = az.summary(trace, hdi_prob=0.89)
# Key metrics
max_rhat = summary["r_hat"].max() # Should be < 1.01
min_ess = summary["ess_bulk"].min() # Should be > 400
# Plots
az.plot_trace(trace) # Trace plots
az.plot_rank_hist(trace) # Ranked histograms (preferred!)
az.plot_posterior(trace) # Posteriors
az.plot_forest(trace) # Forest plot
az.plot_pair(trace) # Pairs plot
# Model comparison
az.loo(trace) # LOO-CV
az.waic(trace) # WAIC
az.compare({"m1": trace1, "m2": trace2})
Diagnostic Checklist
- Rhat < 1.01 for all parameters
- ESS_bulk > 400
- ESS_tail > 400
- Prior predictive produces sensible values
- Posterior predictive matches data pattern
- Pareto k < 0.7 for LOO
Non-Centered Parameterization
For hierarchical models:
# Centered (may have divergences)
theta = pm.Normal("theta", mu=mu, sigma=tau, shape=J)
# Non-centered (recommended)
theta_raw = pm.Normal("theta_raw", mu=0, sigma=1, shape=J)
theta = pm.Deterministic("theta", mu + tau * theta_raw)
PyTensor Math Operations
Inside with pm.Model(), use pm.math not np:
# Correct
mu = pm.math.dot(X, beta)
p = pm.math.sigmoid(eta)
log_x = pm.math.log(x)
# Wrong (will fail)
mu = np.dot(X, beta) # Don't use numpy inside model
Common Priors
# Intercept
alpha = pm.Normal("alpha", mu=0, sigma=10)
# Coefficients
beta = pm.Normal("beta", mu=0, sigma=2.5, shape=K)
# Scale (SD)
sigma = pm.HalfNormal("sigma", sigma=1)
sigma = pm.HalfCauchy("sigma", beta=2.5)
sigma = pm.Exponential("sigma", lam=1)
# Hierarchical SD
tau = pm.HalfCauchy("tau", beta=2.5)
# Correlation matrix
chol, corr, stds = pm.LKJCholeskyCov("chol", n=K, eta=2,
sd_dist=pm.Exponential.dist(1))
Key Differences from Stan
| Feature | PyMC | Stan |
|---|---|---|
| Syntax | Python | DSL |
| Arrays | shape=K | array[K] |
| Math | pm.math.dot() | * operator |
| Blocks | Single context | 7 blocks |
| Output | InferenceData | CmdStanMCMC |
Troubleshooting
| Issue | Solution |
|---|---|
| Divergences | Increase target_accept to 0.9-0.99 |
| Low ESS | Run longer chains, reparameterize |
| Shape errors | Check shape= parameter |
| Slow | Use ADVI for quick approximation |
| Memory | Reduce chains or use mini-batch |
Repository

choxos
Author
choxos/BayesianAgent/plugins/bayesian-modeling/skills/pymc-fundamentals
0
Stars
0
Forks
Updated2h ago
Added1w ago