vercel-ai-sdk
Vercel AI SDK for building chat interfaces with streaming. Use when implementing useChat hook, handling tool calls, streaming responses, or building chat UI. Triggers on useChat, @ai-sdk/react, UIMessage, ChatStatus, streamText, toUIMessageStreamResponse, addToolOutput, onToolCall, sendMessage.
$ 설치
git clone https://github.com/existential-birds/beagle /tmp/beagle && cp -r /tmp/beagle/skills/vercel-ai-sdk ~/.claude/skills/beagle// tip: Run this command in your terminal to install the skill
name: vercel-ai-sdk description: Vercel AI SDK for building chat interfaces with streaming. Use when implementing useChat hook, handling tool calls, streaming responses, or building chat UI. Triggers on useChat, @ai-sdk/react, UIMessage, ChatStatus, streamText, toUIMessageStreamResponse, addToolOutput, onToolCall, sendMessage.
Vercel AI SDK
The Vercel AI SDK provides React hooks and server utilities for building streaming chat interfaces with support for tool calls, file attachments, and multi-step reasoning.
Quick Reference
Basic useChat Setup
import { useChat } from '@ai-sdk/react';
const { messages, status, sendMessage, stop, regenerate } = useChat({
id: 'chat-id',
messages: initialMessages,
onFinish: ({ message, messages, isAbort, isError }) => {
console.log('Chat finished');
},
onError: (error) => {
console.error('Chat error:', error);
}
});
// Send a message
sendMessage({ text: 'Hello', metadata: { createdAt: Date.now() } });
// Send with files
sendMessage({
text: 'Analyze this',
files: fileList // FileList or FileUIPart[]
});
ChatStatus States
The status field indicates the current state of the chat:
ready: Chat is idle and ready to accept new messagessubmitted: Message sent to API, awaiting response stream startstreaming: Response actively streaming from the APIerror: An error occurred during the request
Message Structure
Messages use the UIMessage type with a parts-based structure:
interface UIMessage {
id: string;
role: 'system' | 'user' | 'assistant';
metadata?: unknown;
parts: Array<UIMessagePart>; // text, file, tool-*, reasoning, etc.
}
Part types include:
text: Text content with optional streaming statefile: File attachments (images, documents)tool-{toolName}: Tool invocations with state machinereasoning: AI reasoning tracesdata-{typeName}: Custom data parts
Server-Side Streaming
import { streamText } from 'ai';
import { convertToModelMessages } from 'ai';
const result = streamText({
model: openai('gpt-4'),
messages: convertToModelMessages(uiMessages),
tools: {
getWeather: tool({
description: 'Get weather',
inputSchema: z.object({ city: z.string() }),
execute: async ({ city }) => {
return { temperature: 72, weather: 'sunny' };
}
})
}
});
return result.toUIMessageStreamResponse({
originalMessages: uiMessages,
onFinish: ({ messages }) => {
// Save to database
}
});
Tool Handling Patterns
Client-Side Tool Execution:
const { addToolOutput } = useChat({
onToolCall: async ({ toolCall }) => {
if (toolCall.toolName === 'getLocation') {
addToolOutput({
tool: 'getLocation',
toolCallId: toolCall.toolCallId,
output: 'San Francisco'
});
}
}
});
Rendering Tool States:
{message.parts.map(part => {
if (part.type === 'tool-getWeather') {
switch (part.state) {
case 'input-streaming':
return <pre>{JSON.stringify(part.input, null, 2)}</pre>;
case 'input-available':
return <div>Getting weather for {part.input.city}...</div>;
case 'output-available':
return <div>Weather: {part.output.weather}</div>;
case 'output-error':
return <div>Error: {part.errorText}</div>;
}
}
})}
Reference Files
Detailed documentation on specific aspects:
- use-chat.md: Complete useChat API reference
- messages.md: UIMessage structure and part types
- streaming.md: Server-side streaming implementation
- tools.md: Tool definition and execution patterns
Common Patterns
Error Handling
const { error, clearError } = useChat({
onError: (error) => {
toast.error(error.message);
}
});
// Clear error and reset to ready state
if (error) {
clearError();
}
Message Regeneration
const { regenerate } = useChat();
// Regenerate last assistant message
await regenerate();
// Regenerate specific message
await regenerate({ messageId: 'msg-123' });
Custom Transport
import { DefaultChatTransport } from 'ai';
const { messages } = useChat({
transport: new DefaultChatTransport({
api: '/api/chat',
prepareSendMessagesRequest: ({ id, messages, trigger, messageId }) => ({
body: {
chatId: id,
lastMessage: messages[messages.length - 1],
trigger,
messageId
}
})
})
});
Performance Optimization
// Throttle UI updates to reduce re-renders
const chat = useChat({
experimental_throttle: 100 // Update max once per 100ms
});
Automatic Message Sending
import { lastAssistantMessageIsCompleteWithToolCalls } from 'ai';
const chat = useChat({
sendAutomaticallyWhen: lastAssistantMessageIsCompleteWithToolCalls
// Automatically resend when all tool calls have outputs
});
Type Safety
The SDK provides full type inference for tools and messages:
import { InferUITools, UIMessage } from 'ai';
const tools = {
getWeather: tool({
inputSchema: z.object({ city: z.string() }),
execute: async ({ city }) => ({ weather: 'sunny' })
})
};
type MyMessage = UIMessage<
{ createdAt: number }, // Metadata type
UIDataTypes,
InferUITools<typeof tools> // Tool types
>;
const { messages } = useChat<MyMessage>();
Key Concepts
Parts-Based Architecture
Messages use a parts array instead of a single content field. This allows:
- Streaming text while maintaining other parts
- Tool calls with independent state machines
- File attachments and custom data mixed with text
Tool State Machine
Tool parts progress through states:
input-streaming: Tool input streaming (optional)input-available: Tool input completeapproval-requested: Waiting for user approval (optional)approval-responded: User approved/denied (optional)output-available: Tool execution completeoutput-error: Tool execution failedoutput-denied: User denied approval
Streaming Protocol
The SDK uses Server-Sent Events (SSE) with UIMessageChunk types:
text-start,text-delta,text-endtool-input-available,tool-output-availablereasoning-start,reasoning-delta,reasoning-endstart,finish,abort
Client vs Server Tools
Server-side tools have an execute function and run on the API route.
Client-side tools omit execute and are handled via onToolCall and addToolOutput.
Best Practices
- Always handle the
errorstate and provide user feedback - Use
experimental_throttlefor high-frequency updates - Implement proper loading states based on
status - Type your messages with custom metadata and tools
- Use
sendAutomaticallyWhenfor multi-turn tool workflows - Handle all tool states in the UI for better UX
- Use
stop()to allow users to cancel long-running requests - Validate messages with
validateUIMessageson the server
Repository
