dspy-rb
Build type-safe LLM applications with DSPy.rb - Ruby's programmatic prompt framework with signatures, modules, agents, and optimization
$ 설치
git clone https://github.com/majiayu000/claude-skill-registry /tmp/claude-skill-registry && cp -r /tmp/claude-skill-registry/skills/development/dspy-rb ~/.claude/skills/claude-skill-registry// tip: Run this command in your terminal to install the skill
name: dspy-rb description: Build type-safe LLM applications with DSPy.rb - Ruby's programmatic prompt framework with signatures, modules, agents, and optimization
DSPy.rb
Build LLM apps like you build software. Type-safe, modular, testable.
DSPy.rb brings software engineering best practices to LLM development. Instead of tweaking prompts, you define what you want with Ruby types and let DSPy handle the rest.
Overview
DSPy.rb is a Ruby framework for building language model applications with programmatic prompts. It provides:
- Type-safe signatures - Define inputs/outputs with Sorbet types
- Modular components - Compose and reuse LLM logic
- Automatic optimization - Use data to improve prompts, not guesswork
- Production-ready - Built-in observability, testing, and error handling
Core Concepts
1. Signatures
Define interfaces between your app and LLMs using Ruby types:
class EmailClassifier < DSPy::Signature
description "Classify customer support emails by category and priority"
class Priority < T::Enum
enums do
Low = new('low')
Medium = new('medium')
High = new('high')
Urgent = new('urgent')
end
end
input do
const :email_content, String
const :sender, String
end
output do
const :category, String
const :priority, Priority # Type-safe enum with defined values
const :confidence, Float
end
end
2. Modules
Build complex workflows from simple building blocks:
- Predict - Basic LLM calls with signatures
- ChainOfThought - Step-by-step reasoning
- ReAct - Tool-using agents
- CodeAct - Dynamic code generation agents (install the
dspy-code_actgem)
Lifecycle callbacks
Rails-style lifecycle hooks ship with every DSPy::Module, so you can wrap forward without touching instrumentation:
before– runs ahead offorwardfor setup (metrics, context loading)around– wrapsforward, callsyield, and lets you pair setup/teardown logicafter– fires afterforwardreturns for cleanup or persistence
3. Tools & Toolsets
Create type-safe tools for agents with comprehensive Sorbet support:
# Enum-based tool with automatic type conversion
class CalculatorTool < DSPy::Tools::Base
tool_name 'calculator'
tool_description 'Performs arithmetic operations with type-safe enum inputs'
class Operation < T::Enum
enums do
Add = new('add')
Subtract = new('subtract')
Multiply = new('multiply')
Divide = new('divide')
end
end
sig { params(operation: Operation, num1: Float, num2: Float).returns(T.any(Float, String)) }
def call(operation:, num1:, num2:)
case operation
when Operation::Add then num1 + num2
when Operation::Subtract then num1 - num2
when Operation::Multiply then num1 * num2
when Operation::Divide
return "Error: Division by zero" if num2 == 0
num1 / num2
end
end
end
# Multi-tool toolset with rich types
class DataToolset < DSPy::Tools::Toolset
toolset_name "data_processing"
class Format < T::Enum
enums do
JSON = new('json')
CSV = new('csv')
XML = new('xml')
end
end
class ProcessingConfig < T::Struct
const :max_rows, Integer, default: 1000
const :include_headers, T::Boolean, default: true
const :encoding, String, default: 'utf-8'
end
tool :convert, description: "Convert data between formats"
tool :validate, description: "Validate data structure"
sig { params(data: String, from: Format, to: Format, config: T.nilable(ProcessingConfig)).returns(String) }
def convert(data:, from:, to:, config: nil)
config ||= ProcessingConfig.new
"Converted from #{from.serialize} to #{to.serialize} with config: #{config.inspect}"
end
sig { params(data: String, format: Format).returns(T::Hash[String, T.any(String, Integer, T::Boolean)]) }
def validate(data:, format:)
{
valid: true,
format: format.serialize,
row_count: 42,
message: "Data validation passed"
}
end
end
4. Type System & Discriminators
DSPy.rb uses sophisticated type discrimination for complex data structures:
- Automatic
_typefield injection - DSPy adds discriminator fields to structs for type safety - Union type support - T.any() types automatically disambiguated by
_type - Reserved field name - Avoid defining your own
_typefields in structs - Recursive filtering -
_typefields filtered during deserialization at all nesting levels
5. Optimization
Improve accuracy with real data:
- MIPROv2 - Advanced multi-prompt optimization with bootstrap sampling and Bayesian optimization
- GEPA (Genetic-Pareto Reflective Prompt Evolution) - Reflection-driven instruction rewrite loop with feedback maps, experiment tracking, and telemetry
- Evaluation - Comprehensive framework with built-in and custom metrics, error handling, and batch processing
Quick Start
# Install
gem 'dspy'
# Configure
DSPy.configure do |c|
c.lm = DSPy::LM.new('openai/gpt-4o-mini', api_key: ENV['OPENAI_API_KEY'])
# or use Ollama for local models
# c.lm = DSPy::LM.new('ollama/llama3.2')
end
# Define a task
class SentimentAnalysis < DSPy::Signature
description "Analyze sentiment of text"
input do
const :text, String
end
output do
const :sentiment, String # positive, negative, neutral
const :score, Float # 0.0 to 1.0
end
end
# Use it
analyzer = DSPy::Predict.new(SentimentAnalysis)
result = analyzer.call(text: "This product is amazing!")
puts result.sentiment # => "positive"
puts result.score # => 0.92
Provider Adapter Gems
Add the adapter gems that match the providers you call:
# Gemfile
gem 'dspy'
gem 'dspy-openai' # OpenAI, OpenRouter, Ollama
gem 'dspy-anthropic' # Claude
gem 'dspy-gemini' # Gemini
Each adapter gem already pulls in the official SDK (openai, anthropic, gemini-ai), so you don't need to add those manually.
Key URLs
- Homepage: https://oss.vicente.services/dspy.rb/
- GitHub: https://github.com/vicentereig/dspy.rb
- Documentation: https://oss.vicente.services/dspy.rb/getting-started/
Guidelines for Claude
When helping users with DSPy.rb:
- Focus on signatures - They define the contract with LLMs
- Use proper types - T::Enum for categories, T::Struct for complex data
- Leverage automatic type conversion - Tools and toolsets automatically convert JSON strings to proper Ruby types (enums, structs, arrays, hashes)
- Compose modules - Chain predictors for complex workflows
- Create type-safe tools - Use Sorbet signatures for comprehensive tool parameter validation and conversion
- Test thoroughly - Use RSpec and VCR for reliable tests
- Monitor production - Enable Langfuse by installing the optional o11y gems and setting env vars
Signature Best Practices
Keep description concise - The signature description should state the goal, not the field details:
# ✅ Good - concise goal
class ParseOutline < DSPy::Signature
description 'Extract block-level structure from HTML as a flat list of skeleton sections.'
input do
const :html, String, description: 'Raw HTML to parse'
end
output do
const :sections, T::Array[Section], description: 'Block elements: headings, paragraphs, code blocks, lists'
end
end
# ❌ Bad - putting field docs in signature description
class ParseOutline < DSPy::Signature
description <<~DESC
Extract outline from HTML.
Return sections with:
- node_type: The type of element
- text: For headings, the text content
- level: For headings, 1-6
...
DESC
end
Use defaults over nilable arrays - For OpenAI structured outputs compatibility:
# ✅ Good - works with OpenAI structured outputs
class ASTNode < T::Struct
const :children, T::Array[ASTNode], default: []
end
# ❌ Bad - causes schema issues with OpenAI
class ASTNode < T::Struct
const :children, T.nilable(T::Array[ASTNode])
end
Recursive Types with $defs
DSPy.rb supports recursive types in structured outputs using JSON Schema $defs:
class TreeNode < T::Struct
const :value, String
const :children, T::Array[TreeNode], default: [] # Self-reference
end
class DocumentAST < DSPy::Signature
description 'Parse document into tree structure'
output do
const :root, TreeNode
end
end
The schema generator automatically creates #/$defs/TreeNode references for recursive types, compatible with OpenAI and Gemini structured outputs.
Field Descriptions for T::Struct
DSPy.rb extends T::Struct to support field-level description: kwargs that flow to JSON Schema:
class ASTNode < T::Struct
const :node_type, NodeType, description: 'The type of node (heading, paragraph, etc.)'
const :text, String, default: "", description: 'Text content of the node'
const :level, Integer, default: 0 # No description - field is self-explanatory
const :children, T::Array[ASTNode], default: []
end
# Access descriptions programmatically
ASTNode.field_descriptions[:node_type] # => "The type of node (heading, paragraph, etc.)"
ASTNode.field_descriptions[:text] # => "Text content of the node"
ASTNode.field_descriptions[:level] # => nil (no description)
The generated JSON Schema includes these descriptions:
{
"type": "object",
"properties": {
"node_type": {
"type": "string",
"description": "The type of node (heading, paragraph, etc.)"
},
"text": {
"type": "string",
"description": "Text content of the node"
},
"level": { "type": "integer" }
}
}
When to use field descriptions:
- Complex field semantics not obvious from the type
- Enum-like strings with specific allowed values
- Fields with constraints (e.g., "1-6 for heading levels")
- Nested structs where the purpose isn't clear from the name
When to skip descriptions:
- Self-explanatory fields like
name,id,url - Fields where the type tells the story (e.g.,
T::Booleanfor flags)
Hierarchical Parsing for Complex Documents
For complex documents that may exceed token limits, consider two-phase parsing:
- Phase 1 - Outline: Extract skeleton structure (block types, headings)
- Phase 2 - Fill: Parse each section in detail
This avoids max_tokens limits and produces more complete output.
See Also
For complete API reference, advanced patterns, and integration guides, see REFERENCE.md.
Version
Current: 0.34.1
Repository
