Marketplace

Unnamed Skill

Cloudflare Workers AI for serverless GPU inference. Use for LLMs, text/image generation, embeddings, or encountering AI_ERROR, rate limits, token exceeded errors.

$ 설치

git clone https://github.com/secondsky/claude-skills /tmp/claude-skills && cp -r /tmp/claude-skills/plugins/cloudflare-workers-ai/skills/cloudflare-workers-ai ~/.claude/skills/claude-skills

// tip: Run this command in your terminal to install the skill


name: cloudflare-workers-ai description: Cloudflare Workers AI for serverless GPU inference. Use for LLMs, text/image generation, embeddings, or encountering AI_ERROR, rate limits, token exceeded errors.

Keywords: workers ai, cloudflare ai, ai bindings, llm workers, @cf/meta/llama, workers ai models, ai inference, cloudflare llm, ai streaming, text generation ai, ai embeddings, image generation ai, workers ai rag, ai gateway, llama workers, flux image generation, stable diffusion workers, vision models ai, ai chat completion, AI_ERROR, rate limit ai, model not found, token limit exceeded, neurons exceeded, ai quota exceeded, streaming failed, model unavailable, workers ai hono, ai gateway workers, vercel ai sdk workers, openai compatible workers, workers ai vectorize license: MIT

Cloudflare Workers AI - Complete Reference

Production-ready knowledge domain for building AI-powered applications with Cloudflare Workers AI.

Status: Production Ready ✅ Last Updated: 2025-11-21 Dependencies: cloudflare-worker-base (for Worker setup) Latest Versions: wrangler@4.43.0, @cloudflare/workers-types@4.20251014.0


Table of Contents

  1. Quick Start (5 minutes)
  2. Workers AI API Reference
  3. Model Selection Guide
  4. Common Patterns
  5. AI Gateway Integration
  6. Rate Limits & Pricing
  7. Production Checklist

Quick Start (5 minutes)

1. Add AI Binding

wrangler.jsonc:

{
  "ai": {
    "binding": "AI"
  }
}

2. Run Your First Model

export interface Env {
  AI: Ai;
}

export default {
  async fetch(request: Request, env: Env): Promise<Response> {
    const response = await env.AI.run('@cf/meta/llama-3.1-8b-instruct', {
      prompt: 'What is Cloudflare?',
    });

    return Response.json(response);
  },
};

3. Add Streaming (Recommended)

const stream = await env.AI.run('@cf/meta/llama-3.1-8b-instruct', {
  messages: [{ role: 'user', content: 'Tell me a story' }],
  stream: true, // Always use streaming for text generation!
});

return new Response(stream, {
  headers: { 'content-type': 'text/event-stream' },
});

Why streaming?

  • Prevents buffering large responses in memory
  • Faster time-to-first-token
  • Better user experience for long-form content
  • Avoids Worker timeout issues

Workers AI API Reference

Core API: env.AI.run()

const response = await env.AI.run(model, inputs, options?);
ParameterTypeDescription
modelstringModel ID (e.g., @cf/meta/llama-3.1-8b-instruct)
inputsobjectModel-specific inputs (see model type below)
options.gateway.idstringAI Gateway ID for caching/logging
options.gateway.skipCachebooleanSkip AI Gateway cache

Returns: Promise<ModelOutput> (non-streaming) or ReadableStream (streaming)

Input Types by Model Category

CategoryKey InputsOutput
Text Generationmessages[], stream, max_tokens, temperature{ response: string }
Embeddingstext: string | string[]{ data: number[][], shape: number[] }
Image Generationprompt, num_steps, guidanceBinary PNG
Visionmessages[].content[].image_url{ response: string }

📄 Full model details: Load references/models-catalog.md for complete model list, parameters, and rate limits.


Model Selection Guide

Text Generation (LLMs)

ModelBest ForRate LimitSize
@cf/meta/llama-3.1-8b-instructGeneral purpose, fast300/min8B
@cf/meta/llama-3.2-1b-instructUltra-fast, simple tasks300/min1B
@cf/qwen/qwen1.5-14b-chat-awqHigh quality, complex reasoning150/min14B
@cf/deepseek-ai/deepseek-r1-distill-qwen-32bCoding, technical content300/min32B
@hf/thebloke/mistral-7b-instruct-v0.1-awqFast, efficient400/min7B

Text Embeddings

ModelDimensionsBest ForRate Limit
@cf/baai/bge-base-en-v1.5768General purpose RAG3000/min
@cf/baai/bge-large-en-v1.51024High accuracy search1500/min
@cf/baai/bge-small-en-v1.5384Fast, low storage3000/min

Image Generation

ModelBest ForRate LimitSpeed
@cf/black-forest-labs/flux-1-schnellHigh quality, photorealistic720/minFast
@cf/stabilityai/stable-diffusion-xl-base-1.0General purpose720/minMedium
@cf/lykon/dreamshaper-8-lcmArtistic, stylized720/minFast

Vision Models

ModelBest ForRate Limit
@cf/meta/llama-3.2-11b-vision-instructImage understanding720/min
@cf/unum/uform-gen2-qwen-500mFast image captioning720/min

Common Patterns

Pattern 1: Chat with Streaming

app.post('/chat', async (c) => {
  const { messages } = await c.req.json<{ messages: Array<{ role: string; content: string }> }>();
  const stream = await c.env.AI.run('@cf/meta/llama-3.1-8b-instruct', { messages, stream: true });
  return new Response(stream, { headers: { 'content-type': 'text/event-stream' } });
});

Pattern 2: RAG (Retrieval Augmented Generation)

// 1. Generate embedding for query
const embeddings = await env.AI.run('@cf/baai/bge-base-en-v1.5', { text: [userQuery] });
// 2. Search Vectorize
const matches = await env.VECTORIZE.query(embeddings.data[0], { topK: 3 });
// 3. Build context
const context = matches.matches.map((m) => m.metadata.text).join('\n\n');
// 4. Generate with context
const stream = await env.AI.run('@cf/meta/llama-3.1-8b-instruct', {
  messages: [
    { role: 'system', content: `Answer using this context:\n${context}` },
    { role: 'user', content: userQuery },
  ],
  stream: true,
});
return new Response(stream, { headers: { 'content-type': 'text/event-stream' } });

📄 More patterns: Load references/best-practices.md for structured output, image generation, multi-model consensus, and production patterns.


AI Gateway Integration

Enable caching, logging, and cost tracking with AI Gateway:

const response = await env.AI.run('@cf/meta/llama-3.1-8b-instruct', { prompt: 'Hello' }, {
  gateway: { id: 'my-gateway', skipCache: false },
});

Benefits: Cost tracking, response caching (50-90% savings on repeated queries), request logging, rate limiting, analytics.


Rate Limits & Pricing

Information last verified: 2025-01-14

Rate limits and pricing vary significantly by model. Always check the official documentation for the most current information:

Free Tier: 10,000 neurons/day Paid Tier: $0.011 per 1,000 neurons

📄 Per-model details: See references/models-catalog.md for specific rate limits and pricing for each model.


Production Checklist

Essential before deploying:

  • Enable AI Gateway for cost tracking
  • Implement streaming for text generation
  • Add rate limit retry with exponential backoff
  • Validate input length (prevent token limit errors)
  • Add input sanitization (prevent prompt injection)

📄 Full checklist: Load references/best-practices.md for complete production checklist, error handling patterns, monitoring, and cost optimization.


External SDK Integrations

Workers AI supports OpenAI SDK compatibility and Vercel AI SDK:

// OpenAI SDK - use same patterns with Workers AI models
const openai = new OpenAI({
  apiKey: env.CLOUDFLARE_API_KEY,
  baseURL: `https://api.cloudflare.com/client/v4/accounts/${env.CLOUDFLARE_ACCOUNT_ID}/ai/v1`,
});

// Vercel AI SDK - native integration
import { createWorkersAI } from 'workers-ai-provider';
const workersai = createWorkersAI({ binding: env.AI });

📄 Full integration guide: Load references/integrations.md for OpenAI SDK, Vercel AI SDK, and REST API examples.


Limits Summary

FeatureLimit
Concurrent requestsNo hard limit (rate limits apply)
Max input tokensVaries by model (typically 2K-128K)
Max output tokensVaries by model (typically 512-2048)
Streaming chunk size~1 KB
Image size (output)~5 MB
Request timeoutWorkers timeout applies (30s default, 5m max CPU)
Daily free neurons10,000
Rate limitsSee "Rate Limits & Pricing" section

When to Load References

Reference FileLoad When...
references/models-catalog.mdChoosing a model, checking rate limits, comparing model capabilities
references/best-practices.mdProduction deployment, error handling, cost optimization, security
references/integrations.mdUsing OpenAI SDK, Vercel AI SDK, or REST API instead of native binding

References

Repository

secondsky
secondsky
Author
secondsky/claude-skills/plugins/cloudflare-workers-ai/skills/cloudflare-workers-ai
9
Stars
0
Forks
Updated3d ago
Added6d ago