codex
Executes OpenAI Codex CLI for code analysis, refactoring, and automated editing. Activates when users mention codex commands, code review requests, or automated code transformations requiring advanced reasoning models.
$ 설치
git clone https://github.com/sypsyp97/claude-skill-codex /tmp/claude-skill-codex && cp -r /tmp/claude-skill-codex/.claude/skills/codex ~/.claude/skills/claude-skill-codex// tip: Run this command in your terminal to install the skill
name: codex description: Executes OpenAI Codex CLI for code analysis, refactoring, and automated editing. Activates when users mention codex commands, code review requests, or automated code transformations requiring advanced reasoning models.
Codex Execution Skill
Prerequisites
- Codex CLI installed and configured (
~/.codex/config.toml) - Verify availability:
codex --versionon first use per session
Workflow Checklist
For every Codex task, follow this sequence:
-
☐ Detect HPC/Slurm environment:
- Check if running on HPC cluster (look for
/home/woody/,/home/hpc/, Slurm env vars) - If HPC detected: Always use
--yoloflag to bypass Landlock sandbox restrictions
- Check if running on HPC cluster (look for
-
☐ Ask user for execution parameters via
AskUserQuestion(single prompt):- Model:
gpt-5.2,gpt-5.2-pro,gpt-5.1-codex-max,gpt-5-mini,gpt-5-nanoor default - Reasoning effort:
none,low,medium,high,xhigh
- Model:
-
☐ Determine sandbox mode based on task:
read-only: Code review, analysis, documentationworkspace-write: Code modifications, file creationdanger-full-access: System operations, network access- HPC override: Always add
--yoloflag (bypasses Landlock restrictions)
-
☐ Build command with required flags:
codex exec [OPTIONS] "PROMPT"Essential flags:
-m <MODEL>(if overriding default)-c model_reasoning_effort="<LEVEL>"-s <SANDBOX_MODE>(skip on HPC)--skip-git-repo-check(if outside git repo)-C <DIRECTORY>(if changing workspace)--full-auto(for non-interactive execution, cannot be used with --yolo)
HPC command pattern (with
--yoloto bypass Landlock):codex exec --yolo -m gpt-5.2 -c model_reasoning_effort="high" --skip-git-repo-check \ "Analyze this code: $(cat /path/to/file.py)" 2>/dev/nullNote:
--yolois an alias for--dangerously-bypass-approvals-and-sandboxand is REQUIRED on HPC clusters to avoid Landlock sandbox errors. Do not use --full-auto with --yolo as they are incompatible. -
☐ Execute with stderr suppression:
- Append
2>/dev/nullto hide thinking tokens - Remove only if user requests verbose output or debugging
- Append
-
☐ Validate execution:
- Check exit code (0 = success)
- Summarize output for user
- Report errors with actionable solutions
- If Landlock/sandbox errors on HPC: verify
--yoloflag was used, retry if missing
-
☐ Inform about resume capability:
- "Resume this session anytime:
codex resume"
- "Resume this session anytime:
Command Patterns
🔥 HPC QUICK TIP: On HPC clusters (e.g.,
/home/woody/,/home/hpc/), ALWAYS add--yoloflag to avoid Landlock sandbox errors. Example:codex exec --yolo -m gpt-5.2 ...
Read-Only Analysis
codex exec -m gpt-5.2 -c model_reasoning_effort="medium" -s read-only \
--skip-git-repo-check --full-auto "review @file.py for security issues" 2>/dev/null
Stdin Input (bypasses sandbox file restrictions)
cat file.py | codex exec -m gpt-5.2 -c model_reasoning_effort="low" \
--skip-git-repo-check --full-auto - 2>/dev/null
Note: Stdin with - flag may not be supported in all Codex CLI versions.
HPC/Slurm Environment (YOLO Mode - Bypass Landlock)
When running on HPC clusters with Landlock security restrictions, use the --yolo flag:
# Primary solution: --yolo flag bypasses Landlock sandbox
codex exec --yolo -m gpt-5 -c model_reasoning_effort="high" --skip-git-repo-check \
"Analyze this code: $(cat /path/to/file.py)" 2>/dev/null
Alternative: Manual Code Injection (if --yolo is unavailable):
# Capture code content and pass directly in prompt
codex exec -m gpt-5.2 -c model_reasoning_effort="high" --skip-git-repo-check --full-auto \
"Analyze this Python code: $(cat file.py)" 2>/dev/null
Or for large files, use heredoc:
codex exec --yolo -m gpt-5.2 -c model_reasoning_effort="high" --skip-git-repo-check "$(cat <<'ENDCODE'
Analyze the following code comprehensively:
$(cat file.py)
Focus on: architecture, algorithms, multi-GPU optimization, potential bugs, code quality.
ENDCODE
)" 2>/dev/null
Note: --yolo is short for --dangerously-bypass-approvals-and-sandbox and is safe on HPC login nodes where you have limited permissions anyway. Do not combine --yolo with --full-auto as they are incompatible.
Code Modification
codex exec -m gpt-5.1-codex-max -c model_reasoning_effort="high" -s workspace-write \
--skip-git-repo-check --full-auto "refactor @module.py to async/await" 2>/dev/null
Resume Session
echo "fix the remaining issues" | codex exec --skip-git-repo-check resume --last 2>/dev/null
Cross-Directory Execution
codex exec -C /path/to/project -m gpt-5.2 -c model_reasoning_effort="medium" \
-s read-only --skip-git-repo-check --full-auto "analyze architecture" 2>/dev/null
Using Profiles
codex exec --profile production -c model_reasoning_effort="high" \
--full-auto "optimize performance in @app.py" 2>/dev/null
CLI Reference
Core Flags
| Flag | Values | When to Use |
|---|---|---|
-m, --model | gpt-5.2, gpt-5.2-pro, gpt-5.1-codex-max, gpt-5-mini, gpt-5-nano | Override default model |
-c, --config | key=value | Runtime config override (repeatable) |
-s, --sandbox | read-only, workspace-write, danger-full-access | Set execution permissions |
--yolo | flag | REQUIRED on HPC - Bypasses all sandbox restrictions (alias for --dangerously-bypass-approvals-and-sandbox). Cannot be used with --full-auto |
-C, --cd | path | Change workspace directory |
--skip-git-repo-check | flag | Allow execution outside git repos |
--full-auto | flag | Non-interactive mode (workspace-write + approvals on failure). Cannot be used with --yolo |
-p, --profile | string | Load configuration profile from config.toml |
--json | flag | JSON event output (CI/CD pipelines) |
-o, --output-last-message | path | Write final message to file |
-i, --image | path[,path...] | Attach images (repeatable or comma-separated) |
--oss | flag | Use local open-source model (requires Ollama) |
Configuration Options
Model Reasoning Effort (-c model_reasoning_effort="<LEVEL>"):
none: Minimal reasoning for low-latency interactionslow: Standard operations, routine refactoringmedium: Complex analysis, architectural decisions (default)high: Critical code, security audits, complex algorithmsxhigh: Extremely complex problems requiring maximum reasoning depth
Model Verbosity (-c model_verbosity="<LEVEL>"):
low: Minimal outputmedium: Balanced detail (default)high: Verbose explanations
Approval Prompts (-c approvals="<WHEN>"):
on-request: Before any tool useon-failure: Only on errors (default for--full-auto)untrusted: Minimal promptsnever: No interruptions (use with caution)
Configuration Management
Config File Location
~/.codex/config.toml
Runtime Overrides
# Override single setting
codex exec -c model="gpt-5.2" "task"
# Override multiple settings
codex exec -c model="gpt-5.2" -c model_reasoning_effort="high" "task"
Using Profiles
Define in config.toml:
[profiles.research]
model = "gpt-5.2"
model_reasoning_effort = "high"
sandbox = "read-only"
[profiles.development]
model = "gpt-5.1-codex-max"
sandbox = "workspace-write"
Use with:
codex exec --profile research "analyze codebase"
Resume Behavior
Automatic inheritance:
- Model selection
- Reasoning effort
- Sandbox mode
- Configuration overrides
Resume syntax:
# Resume last session
codex exec resume --last
# Resume with new prompt
codex exec resume --last "continue with next steps"
# Resume via stdin
echo "new instructions" | codex exec resume --last 2>/dev/null
# Resume specific session
codex exec resume <SESSION_ID> "follow-up task"
Flag injection (between exec and resume):
# Change reasoning effort for resumed session
codex exec -c model_reasoning_effort="high" resume --last
Error Handling
Validation Loop
- Execute command
- Check exit code (non-zero = failure)
- Report error with context
- Ask user for direction via
AskUserQuestion - Retry with adjustments or escalate
Permission Requests
Before using high-impact flags, request user approval via AskUserQuestion:
--full-auto: Automated execution-s danger-full-access: System-wide access--yolo/--dangerously-bypass-approvals-and-sandbox:- HPC clusters: No approval needed (required for operation)
- Personal machines: Request approval (full system access)
Partial Success Handling
When output contains warnings:
- Summarize successful operations
- Detail failures with context
- Use
AskUserQuestionto determine next steps - Propose specific adjustments
Troubleshooting
File Access Blocked
Symptom: "shell is blocked by the sandbox" or permission errors
Root cause: Sandbox read-only mode restricts file system
Solutions (priority order):
-
Stdin piping (recommended):
cat target.py | codex exec -m gpt-5.2 -c model_reasoning_effort="medium" \ --skip-git-repo-check --full-auto - 2>/dev/null -
Explicit permissions:
codex exec -m gpt-5.2 -s read-only \ -c 'sandbox_permissions=["disk-full-read-access"]' \ --skip-git-repo-check --full-auto "@file.py" 2>/dev/null -
Upgrade sandbox:
codex exec -m gpt-5.2 -s workspace-write \ --skip-git-repo-check --full-auto "review @file.py" 2>/dev/null
Invalid Flag Errors
Symptom: "unexpected argument '--add-dir' found"
Cause: Flag does not exist in Codex CLI
Solution: Use -C <DIR> to change directory:
codex exec -C /target/dir -m gpt-5.2 --skip-git-repo-check \
--full-auto "task" 2>/dev/null
Exit Code Failures
Symptom: Non-zero exit without clear message
Diagnostic steps:
- Remove
2>/dev/nullto see full stderr - Verify installation:
codex --version - Check configuration:
cat ~/.codex/config.toml - Test minimal command:
codex exec -m gpt-5.2 "hello world" - Verify model access:
codex exec --model gpt-5.2 "test"
Model Unavailable
Symptom: "model not found" or authentication errors
Solutions:
- Check configured model:
grep model ~/.codex/config.toml - Verify API access: Ensure valid credentials
- Try alternative model:
-m gpt-5.2-proor-m gpt-5-mini - Use OSS fallback:
--oss(requires Ollama)
Session Resume Fails
Symptom: Cannot resume previous session
Diagnostic steps:
- List recent sessions:
codex history - Verify session ID format
- Try
--lastflag instead of specific ID - Check if session expired or was cleaned up
HPC/Slurm Sandbox Failures
Symptom: "Landlock sandbox error", "LandlockRestrict", or all file operations fail
Root Cause: HPC clusters use Landlock/seccomp kernel security modules that block Codex's default sandbox
✅ SOLUTION: Use the --yolo flag (priority order):
-
YOLO Flag (PRIMARY SOLUTION - WORKS ON HPC):
# Bypasses Landlock restrictions completely codex exec --yolo -m gpt-5.2 -c model_reasoning_effort="high" --skip-git-repo-check \ "Analyze this code: $(cat /full/path/to/file.py)" 2>/dev/nullWhy this works:
--yolo(alias for--dangerously-bypass-approvals-and-sandbox) disables the Codex sandbox entirely, allowing direct file access on HPC systems. Note: Do not use --full-auto with --yolo as they are incompatible. -
Manual Code Injection (fallback if --yolo unavailable):
# Pass code directly in prompt via command substitution codex exec -m gpt-5.2 -c model_reasoning_effort="high" --skip-git-repo-check --full-auto \ "Analyze this code comprehensively: $(cat /full/path/to/file.py)" 2>/dev/null -
Heredoc for Long Code:
codex exec --yolo -m gpt-5.2 -c model_reasoning_effort="high" --skip-git-repo-check "$(cat <<'EOF' Analyze the following Python code for architecture, bugs, and optimization opportunities: $(cat /home/user/script.py) Provide technical depth with actionable insights. EOF )" 2>/dev/null -
Run on Login Node (if compute node blocks outbound):
# SSH to login node first, then run codex there (not in Slurm job) ssh login.cluster.edu codex exec --yolo -m gpt-5.2 --skip-git-repo-check "analyze @file.py" 2>/dev/null -
Use Apptainer/Singularity (if cluster supports):
# Build image with Codex installed, then run via Slurm singularity exec codex.sif codex exec --yolo -m gpt-5 "task"
Best Practice for HPC:
- Always use
--yoloflag on HPC clusters - it's safe on login nodes where you already have limited permissions - Run analysis on login nodes, submit only heavy compute jobs to Slurm
- Keep code files on shared filesystem readable from login nodes
- Combine
--yolowith$(cat file.py)for maximum compatibility
Best Practices
Reasoning Effort Selection
- none: Minimal reasoning for low-latency interactions, quick syntax fixes
- low: Standard refactoring, basic analysis
- medium: Complex refactoring, architecture review
- high: Security audits, algorithm optimization, critical bugs
- xhigh: Extremely complex problems requiring maximum reasoning depth
Sandbox Mode Selection
- read-only: Default for any analysis or review
- workspace-write: File modifications only
- danger-full-access: Network operations, system commands (rare)
Stderr Suppression
- Always use
2>/dev/nullunless:- User explicitly requests thinking tokens
- Debugging failed commands
- Troubleshooting configuration issues
Profile Usage
Create profiles for common workflows:
review: High reasoning, read-onlyrefactor: Medium reasoning, workspace-writequick: Low reasoning, read-onlysecurity: High reasoning, workspace-write
Stdin vs File Reference
- Stdin: Single file analysis, avoids permissions
- File reference: Multi-file context, codebase-wide changes
Safety Guidelines
HPC Clusters - --yolo is SAFE and REQUIRED:
- HPC login nodes already have strict permissions (no root access, no network modification)
--yolobypasses Codex sandbox but you still operate within HPC user restrictions- Always use
--yoloon HPC to avoid Landlock errors
General Use - Exercise Caution:
- Don't use
--yoloon unrestricted systems (your laptop, cloud VMs with full sudo) - Prefer
--full-auto+-s workspace-writefor normal development
Always verify before:
- Using
danger-full-accesssandbox (outside HPC) - Disabling approval prompts on production systems
- Running with
--yoloon personal machines with sudo access
Ask user approval for:
- First-time
workspace-writeusage - System-wide access requests
- Destructive operations (deletions, migrations)
Advanced Usage
CI/CD Integration
codex exec --json -o result.txt -m gpt-5.2 \
-c model_reasoning_effort="medium" \
--skip-git-repo-check --full-auto \
"run security audit on changed files" 2>/dev/null
Batch Processing
for file in *.py; do
cat "$file" | codex exec -m gpt-5.2 -c model_reasoning_effort="low" \
--skip-git-repo-check --full-auto "lint and format" - 2>/dev/null
done
Multi-Step Workflows
# Step 1: Analysis
codex exec -m gpt-5.2 -c model_reasoning_effort="high" -s read-only \
--full-auto "analyze @codebase for architectural issues" 2>/dev/null
# Step 2: Resume with changes
echo "implement suggested refactoring" | \
codex exec -s workspace-write resume --last 2>/dev/null
When to Escalate
If errors persist after troubleshooting:
-
Check documentation:
WebFetch https://developers.openai.com/codex/cli/referenceWebFetch https://developers.openai.com/codex/local-config#cli -
Report to user:
- Error message verbatim
- Attempted solutions
- Configuration details
- Exit codes and stderr output
-
Request guidance:
- Alternative approaches
- Configuration adjustments
- Manual intervention points
Model Selection Guide
| Task Type | Recommended Model | Reasoning Effort |
|---|---|---|
| Quick syntax fixes | gpt-5-mini | none |
| Simple refactoring | gpt-5-mini | low |
| Code review | gpt-5.2 | medium |
| Complex refactoring | gpt-5.1-codex-max | medium |
| Architecture analysis | gpt-5.2 | high |
| Security audit | gpt-5.2 | high |
| Algorithm optimization | gpt-5.1-codex-max | high |
| Documentation generation | gpt-5-mini | low |
| Tough algorithmic problems | gpt-5.2-pro | xhigh |
| High-throughput tasks | gpt-5-nano | none |
Common Workflows
Code Review Workflow
- Ask user: model + reasoning effort
- Run read-only analysis
- Present findings
- If changes needed: resume with workspace-write
- Validate changes
- Inform about resume capability
Refactoring Workflow
- Ask user: model + reasoning effort
- Analyze current code (read-only)
- Propose changes
- Get user approval
- Apply changes (workspace-write)
- Run validation/tests
- Report results
Security Audit Workflow
- Use high reasoning effort
- Run comprehensive analysis (read-only)
- Document findings
- Propose fixes
- Apply fixes if approved (workspace-write)
- Re-audit to verify
- Generate report
Repository
