openai
OpenAI API via curl. Use this skill for GPT chat completions, DALL-E image generation, Whisper audio transcription, embeddings, and text-to-speech.
$ 설치
git clone https://github.com/vm0-ai/vm0-skills /tmp/vm0-skills && cp -r /tmp/vm0-skills/openai ~/.claude/skills/vm0-skills// tip: Run this command in your terminal to install the skill
name: openai description: OpenAI API via curl. Use this skill for GPT chat completions, DALL-E image generation, Whisper audio transcription, embeddings, and text-to-speech. vm0_secrets:
- OPENAI_API_KEY
OpenAI API
Use the OpenAI API via direct curl calls to access GPT models, DALL-E image generation, Whisper transcription, embeddings, and text-to-speech.
Official docs:
https://platform.openai.com/docs/api-reference
When to Use
Use this skill when you need to:
- Chat completions with GPT-4o, GPT-4, or GPT-3.5 models
- Image generation with DALL-E 3
- Audio transcription with Whisper
- Text-to-speech audio generation
- Text embeddings for semantic search and RAG
- Vision tasks (analyze images with GPT-4o)
Prerequisites
- Sign up at OpenAI Platform and create an account
- Go to API Keys and generate a new secret key
- Add billing information and set usage limits
export OPENAI_API_KEY="sk-..."
Pricing (as of 2025)
| Model | Input (per 1M tokens) | Output (per 1M tokens) |
|---|---|---|
| GPT-4o | $2.50 | $10.00 |
| GPT-4o-mini | $0.15 | $0.60 |
| GPT-4 Turbo | $10.00 | $30.00 |
| text-embedding-3-small | $0.02 | - |
| text-embedding-3-large | $0.13 | - |
Rate Limits
Rate limits vary by tier (based on usage history). Check your limits at Platform Settings.
Important: When using
$VARin a command that pipes to another command, wrap the command containing$VARinbash -c '...'. Due to a Claude Code bug, environment variables are silently cleared when pipes are used directly.bash -c 'curl -s "https://api.example.com" -H "Authorization: Bearer $API_KEY"' | jq .
How to Use
All examples below assume you have OPENAI_API_KEY set.
Base URL: https://api.openai.com/v1
1. Basic Chat Completion
Send a simple chat message:
Write to /tmp/openai_request.json:
{
"model": "gpt-4o-mini",
"messages": [{"role": "user", "content": "Hello, who are you?"}]
}
Then run:
bash -c 'curl -s "https://api.openai.com/v1/chat/completions" -H "Content-Type: application/json" -H "Authorization: Bearer ${OPENAI_API_KEY}" -d @/tmp/openai_request.json' | jq '.choices[0].message.content'
Available models:
gpt-4o: Latest flagship model (128K context)gpt-4o-mini: Fast and affordable (128K context)gpt-4-turbo: Previous generation (128K context)gpt-3.5-turbo: Legacy model (16K context)o1: Reasoning model for complex taskso1-mini: Smaller reasoning model
2. Chat with System Prompt
Use a system message to set behavior:
Write to /tmp/openai_request.json:
{
"model": "gpt-4o-mini",
"messages": [
{"role": "system", "content": "You are a helpful assistant that responds in JSON format."},
{"role": "user", "content": "List 3 programming languages with their main use cases."}
]
}
Then run:
bash -c 'curl -s "https://api.openai.com/v1/chat/completions" -H "Content-Type: application/json" -H "Authorization: Bearer ${OPENAI_API_KEY}" -d @/tmp/openai_request.json' | jq '.choices[0].message.content'
3. Streaming Response
Get real-time token-by-token output:
Write to /tmp/openai_request.json:
{
"model": "gpt-4o-mini",
"messages": [{"role": "user", "content": "Write a haiku about programming."}],
"stream": true
}
Then run:
curl -s "https://api.openai.com/v1/chat/completions" -H "Content-Type: application/json" -H "Authorization: Bearer ${OPENAI_API_KEY}" -d @/tmp/openai_request.json
Streaming returns Server-Sent Events (SSE) with delta chunks.
4. JSON Mode
Force the model to return valid JSON:
Write to /tmp/openai_request.json:
{
"model": "gpt-4o-mini",
"messages": [
{"role": "system", "content": "Return JSON only."},
{"role": "user", "content": "Give me info about Paris: name, country, population."}
],
"response_format": {"type": "json_object"}
}
Then run:
bash -c 'curl -s "https://api.openai.com/v1/chat/completions" -H "Content-Type: application/json" -H "Authorization: Bearer ${OPENAI_API_KEY}" -d @/tmp/openai_request.json' | jq '.choices[0].message.content'
5. Vision (Image Analysis)
Analyze an image with GPT-4o:
Write to /tmp/openai_request.json:
{
"model": "gpt-4o-mini",
"messages": [
{
"role": "user",
"content": [
{"type": "text", "text": "What is in this image?"},
{"type": "image_url", "image_url": {"url": "https://upload.wikimedia.org/wikipedia/commons/thumb/3/3a/Cat03.jpg/1200px-Cat03.jpg"}}
]
}
],
"max_tokens": 300
}
Then run:
bash -c 'curl -s "https://api.openai.com/v1/chat/completions" -H "Content-Type: application/json" -H "Authorization: Bearer ${OPENAI_API_KEY}" -d @/tmp/openai_request.json' | jq '.choices[0].message.content'
6. Function Calling (Tools)
Define functions the model can call:
Write to /tmp/openai_request.json:
{
"model": "gpt-4o-mini",
"messages": [{"role": "user", "content": "What is the weather in Tokyo?"}],
"tools": [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get current weather for a location",
"parameters": {
"type": "object",
"properties": {
"location": {"type": "string", "description": "City name"}
},
"required": ["location"]
}
}
}
]
}
Then run:
bash -c 'curl -s "https://api.openai.com/v1/chat/completions" -H "Content-Type: application/json" -H "Authorization: Bearer ${OPENAI_API_KEY}" -d @/tmp/openai_request.json' | jq '.choices[0].message.tool_calls'
7. Generate Embeddings
Create vector embeddings for text:
Write to /tmp/openai_request.json:
{
"model": "text-embedding-3-small",
"input": "The quick brown fox jumps over the lazy dog."
}
Then run:
bash -c 'curl -s "https://api.openai.com/v1/embeddings" -H "Content-Type: application/json" -H "Authorization: Bearer ${OPENAI_API_KEY}" -d @/tmp/openai_request.json' | jq '.data[0].embedding[:5]'
This extracts the first 5 dimensions of the embedding vector.
Embedding models:
text-embedding-3-small: 1536 dimensions, fastesttext-embedding-3-large: 3072 dimensions, most capable
8. Generate Image (DALL-E 3)
Create an image from text:
Write to /tmp/openai_request.json:
{
"model": "dall-e-3",
"prompt": "A white cat sitting on a windowsill, digital art",
"n": 1,
"size": "1024x1024"
}
Then run:
bash -c 'curl -s "https://api.openai.com/v1/images/generations" -H "Content-Type: application/json" -H "Authorization: Bearer ${OPENAI_API_KEY}" -d @/tmp/openai_request.json' | jq '.data[0].url'
Parameters:
size:1024x1024,1792x1024, or1024x1792quality:standardorhdstyle:vividornatural
9. Audio Transcription (Whisper)
Transcribe audio to text:
bash -c 'curl -s "https://api.openai.com/v1/audio/transcriptions" -H "Authorization: Bearer ${OPENAI_API_KEY}" -F "file=@audio.mp3" -F "model=whisper-1"' | jq '.text'
Supports: mp3, mp4, mpeg, mpga, m4a, wav, webm (max 25MB).
10. Text-to-Speech
Generate audio from text:
Write to /tmp/openai_request.json:
{
"model": "tts-1",
"input": "Hello! This is a test of OpenAI text to speech.",
"voice": "alloy"
}
Then run:
curl -s "https://api.openai.com/v1/audio/speech" -H "Content-Type: application/json" -H "Authorization: Bearer ${OPENAI_API_KEY}" -d @/tmp/openai_request.json --output speech.mp3
Voices: alloy, echo, fable, onyx, nova, shimmer
Models: tts-1 (fast), tts-1-hd (high quality)
11. List Available Models
Get all available models:
bash -c 'curl -s "https://api.openai.com/v1/models" -H "Authorization: Bearer ${OPENAI_API_KEY}"' | jq -r '.data[].id' | sort | head -20
12. Check Token Usage
Extract usage from response:
Write to /tmp/openai_request.json:
{
"model": "gpt-4o-mini",
"messages": [{"role": "user", "content": "Hi!"}]
}
Then run:
bash -c 'curl -s "https://api.openai.com/v1/chat/completions" -H "Content-Type: application/json" -H "Authorization: Bearer ${OPENAI_API_KEY}" -d @/tmp/openai_request.json' | jq '.usage'
This returns token counts for both input and output.
Response includes:
prompt_tokens: Input token countcompletion_tokens: Output token counttotal_tokens: Sum of both
Guidelines
- Choose the right model: Use
gpt-4o-minifor most tasks,gpt-4ofor complex reasoning,o1for advanced math/coding - Set max_tokens: Prevent runaway generation and control costs
- Use streaming for long responses: Better UX for real-time applications
- JSON mode requires system prompt: Include JSON instructions when using
response_format - Vision requires gpt-4o models: Only
gpt-4oandgpt-4o-minisupport image input - Batch similar requests: Use embeddings API batch input for efficiency
- Monitor usage: Check dashboard regularly to avoid unexpected charges
