tapestry

Unified content extraction and action planning. Use when user says "tapestry <URL>", "weave <URL>", "help me plan <URL>", "extract and plan <URL>", "make this actionable <URL>", or similar phrases indicating they want to extract content and create an action plan. Automatically detects content type (YouTube video, article, PDF) and processes accordingly.

allowed_tools: Bash,Read,Write

$ 설치

git clone https://github.com/michalparkola/tapestry-skills-for-claude-code /tmp/tapestry-skills-for-claude-code && cp -r /tmp/tapestry-skills-for-claude-code/tapestry ~/.claude/skills/tapestry-skills-for-claude-code

// tip: Run this command in your terminal to install the skill


name: tapestry description: Unified content extraction and action planning. Use when user says "tapestry ", "weave ", "help me plan ", "extract and plan ", "make this actionable ", or similar phrases indicating they want to extract content and create an action plan. Automatically detects content type (YouTube video, article, PDF) and processes accordingly. allowed-tools: Bash,Read,Write

Tapestry: Unified Content Extraction + Action Planning

This is the master skill that orchestrates the entire Tapestry workflow:

  1. Detect content type from URL
  2. Extract content using appropriate skill
  3. Automatically create a Ship-Learn-Next action plan

When to Use This Skill

Activate when the user:

  • Says "tapestry [URL]"
  • Says "weave [URL]"
  • Says "help me plan [URL]"
  • Says "extract and plan [URL]"
  • Says "make this actionable [URL]"
  • Says "turn [URL] into a plan"
  • Provides a URL and asks to "learn and implement from this"
  • Wants the full Tapestry workflow (extract → plan)

Keywords to watch for: tapestry, weave, plan, actionable, extract and plan, make a plan, turn into action

How It Works

Complete Workflow:

  1. Detect URL type (YouTube, article, PDF)
  2. Extract content using appropriate skill:
    • YouTube → youtube-transcript skill
    • Article → article-extractor skill
    • PDF → download and extract text
  3. Create action plan using ship-learn-next skill
  4. Save both content file and plan file
  5. Present summary to user

URL Detection Logic

YouTube Videos

Patterns to detect:

  • youtube.com/watch?v=
  • youtu.be/
  • youtube.com/shorts/
  • m.youtube.com/watch?v=

Action: Use youtube-transcript skill

Web Articles/Blog Posts

Patterns to detect:

  • http:// or https://
  • NOT YouTube, NOT PDF
  • Common domains: medium.com, substack.com, dev.to, etc.
  • Any HTML page

Action: Use article-extractor skill

PDF Documents

Patterns to detect:

  • URL ends with .pdf
  • URL returns Content-Type: application/pdf

Action: Download and extract text

Other Content

Fallback:

  • Try article-extractor (works for most HTML)
  • If fails, inform user of unsupported type

Step-by-Step Workflow

Step 1: Detect Content Type

URL="$1"

# Check for YouTube
if [[ "$URL" =~ youtube\.com/watch || "$URL" =~ youtu\.be/ || "$URL" =~ youtube\.com/shorts ]]; then
    CONTENT_TYPE="youtube"

# Check for PDF
elif [[ "$URL" =~ \.pdf$ ]]; then
    CONTENT_TYPE="pdf"

# Check if URL returns PDF
elif curl -sI "$URL" | grep -i "Content-Type: application/pdf" > /dev/null; then
    CONTENT_TYPE="pdf"

# Default to article
else
    CONTENT_TYPE="article"
fi

echo "📍 Detected: $CONTENT_TYPE"

Step 2: Extract Content (by Type)

YouTube Video

# Use youtube-transcript skill workflow
echo "📺 Extracting YouTube transcript..."

# 1. Check for yt-dlp
if ! command -v yt-dlp &> /dev/null; then
    echo "Installing yt-dlp..."
    brew install yt-dlp
fi

# 2. Get video title
VIDEO_TITLE=$(yt-dlp --print "%(title)s" "$URL" | tr '/' '_' | tr ':' '-' | tr '?' '' | tr '"' '')

# 3. Download transcript
yt-dlp --write-auto-sub --skip-download --sub-langs en --output "temp_transcript" "$URL"

# 4. Convert to clean text (deduplicate)
python3 -c "
import sys, re
seen = set()
vtt_file = 'temp_transcript.en.vtt'
try:
    with open(vtt_file, 'r') as f:
        for line in f:
            line = line.strip()
            if line and not line.startswith('WEBVTT') and not line.startswith('Kind:') and not line.startswith('Language:') and '-->' not in line:
                clean = re.sub('<[^>]*>', '', line)
                clean = clean.replace('&amp;', '&').replace('&gt;', '>').replace('&lt;', '<')
                if clean and clean not in seen:
                    print(clean)
                    seen.add(clean)
except FileNotFoundError:
    print('Error: Could not find transcript file', file=sys.stderr)
    sys.exit(1)
" > "${VIDEO_TITLE}.txt"

# 5. Cleanup
rm -f temp_transcript.en.vtt

CONTENT_FILE="${VIDEO_TITLE}.txt"
echo "✓ Saved transcript: $CONTENT_FILE"

Article/Blog Post

# Use article-extractor skill workflow
echo "📄 Extracting article content..."

# 1. Check for extraction tools
if command -v reader &> /dev/null; then
    TOOL="reader"
elif command -v trafilatura &> /dev/null; then
    TOOL="trafilatura"
else
    TOOL="fallback"
fi

echo "Using: $TOOL"

# 2. Extract based on tool
case $TOOL in
    reader)
        reader "$URL" > temp_article.txt
        ARTICLE_TITLE=$(head -n 1 temp_article.txt | sed 's/^# //')
        ;;

    trafilatura)
        METADATA=$(trafilatura --URL "$URL" --json)
        ARTICLE_TITLE=$(echo "$METADATA" | python3 -c "import json, sys; print(json.load(sys.stdin).get('title', 'Article'))")
        trafilatura --URL "$URL" --output-format txt --no-comments > temp_article.txt
        ;;

    fallback)
        ARTICLE_TITLE=$(curl -s "$URL" | grep -oP '<title>\K[^<]+' | head -n 1)
        ARTICLE_TITLE=${ARTICLE_TITLE%% - *}
        curl -s "$URL" | python3 -c "
from html.parser import HTMLParser
import sys

class ArticleExtractor(HTMLParser):
    def __init__(self):
        super().__init__()
        self.content = []
        self.skip_tags = {'script', 'style', 'nav', 'header', 'footer', 'aside', 'form'}
        self.in_content = False

    def handle_starttag(self, tag, attrs):
        if tag not in self.skip_tags and tag in {'p', 'article', 'main'}:
            self.in_content = True

    def handle_data(self, data):
        if self.in_content and data.strip():
            self.content.append(data.strip())

    def get_content(self):
        return '\n\n'.join(self.content)

parser = ArticleExtractor()
parser.feed(sys.stdin.read())
print(parser.get_content())
" > temp_article.txt
        ;;
esac

# 3. Clean filename
FILENAME=$(echo "$ARTICLE_TITLE" | tr '/' '-' | tr ':' '-' | tr '?' '' | tr '"' '' | cut -c 1-80 | sed 's/ *$//')
CONTENT_FILE="${FILENAME}.txt"
mv temp_article.txt "$CONTENT_FILE"

echo "✓ Saved article: $CONTENT_FILE"

PDF Document

# Download and extract PDF
echo "📑 Downloading PDF..."

# 1. Download PDF
PDF_FILENAME=$(basename "$URL")
curl -L -o "$PDF_FILENAME" "$URL"

# 2. Extract text using pdftotext (if available)
if command -v pdftotext &> /dev/null; then
    pdftotext "$PDF_FILENAME" temp_pdf.txt
    CONTENT_FILE="${PDF_FILENAME%.pdf}.txt"
    mv temp_pdf.txt "$CONTENT_FILE"
    echo "✓ Extracted text from PDF: $CONTENT_FILE"

    # Optionally keep PDF
    echo "Keep original PDF? (y/n)"
    read -r KEEP_PDF
    if [[ ! "$KEEP_PDF" =~ ^[Yy]$ ]]; then
        rm "$PDF_FILENAME"
    fi
else
    # No pdftotext available
    echo "⚠️  pdftotext not found. PDF downloaded but not extracted."
    echo "   Install with: brew install poppler"
    CONTENT_FILE="$PDF_FILENAME"
fi

Step 3: Create Ship-Learn-Next Action Plan

IMPORTANT: Always create an action plan after extracting content.

# Read the extracted content
CONTENT_FILE="[from previous step]"

# Invoke ship-learn-next skill logic:
# 1. Read the content file
# 2. Extract core actionable lessons
# 3. Create 5-rep progression plan
# 4. Save as: Ship-Learn-Next Plan - [Quest Title].md

# See ship-learn-next/SKILL.md for full details

Key points for plan creation:

  • Extract actionable lessons (not just summaries)
  • Define a specific 4-8 week quest
  • Create Rep 1 (shippable this week)
  • Design Reps 2-5 (progressive iterations)
  • Save plan to markdown file
  • Use format: Ship-Learn-Next Plan - [Brief Quest Title].md

Step 4: Present Results

Show user:

✅ Tapestry Workflow Complete!

📥 Content Extracted:
   ✓ [Content type]: [Title]
   ✓ Saved to: [filename.txt]
   ✓ [X] words extracted

📋 Action Plan Created:
   ✓ Quest: [Quest title]
   ✓ Saved to: Ship-Learn-Next Plan - [Title].md

🎯 Your Quest: [One-line summary]

📍 Rep 1 (This Week): [Rep 1 goal]

When will you ship Rep 1?

Complete Tapestry Workflow Script

#!/bin/bash

# Tapestry: Extract content + create action plan
# Usage: tapestry <URL>

URL="$1"

if [ -z "$URL" ]; then
    echo "Usage: tapestry <URL>"
    exit 1
fi

echo "🧵 Tapestry Workflow Starting..."
echo "URL: $URL"
echo ""

# Step 1: Detect content type
if [[ "$URL" =~ youtube\.com/watch || "$URL" =~ youtu\.be/ || "$URL" =~ youtube\.com/shorts ]]; then
    CONTENT_TYPE="youtube"
elif [[ "$URL" =~ \.pdf$ ]] || curl -sI "$URL" | grep -iq "Content-Type: application/pdf"; then
    CONTENT_TYPE="pdf"
else
    CONTENT_TYPE="article"
fi

echo "📍 Detected: $CONTENT_TYPE"
echo ""

# Step 2: Extract content
case $CONTENT_TYPE in
    youtube)
        echo "📺 Extracting YouTube transcript..."
        # [YouTube extraction code from above]
        ;;

    article)
        echo "📄 Extracting article..."
        # [Article extraction code from above]
        ;;

    pdf)
        echo "📑 Downloading PDF..."
        # [PDF extraction code from above]
        ;;
esac

echo ""

# Step 3: Create action plan
echo "🚀 Creating Ship-Learn-Next action plan..."
# [Plan creation using ship-learn-next skill]

echo ""
echo "✅ Tapestry Workflow Complete!"
echo ""
echo "📥 Content: $CONTENT_FILE"
echo "📋 Plan: Ship-Learn-Next Plan - [title].md"
echo ""
echo "🎯 Next: Review your action plan and ship Rep 1!"

Error Handling

Common Issues:

1. Unsupported URL type

  • Try article extraction as fallback
  • If fails: "Could not extract content from this URL type"

2. No content extracted

  • Check if URL is accessible
  • Try alternate extraction method
  • Inform user: "Extraction failed. URL may require authentication."

3. Tools not installed

  • Auto-install when possible (yt-dlp, reader, trafilatura)
  • Provide install instructions if auto-install fails
  • Use fallback methods when available

4. Empty or invalid content

  • Verify file has content before creating plan
  • Don't create plan if extraction failed
  • Show preview to user before planning

Best Practices

  • ✅ Always show what was detected ("📍 Detected: youtube")
  • ✅ Display progress for each step
  • ✅ Save both content file AND plan file
  • ✅ Show preview of extracted content (first 10 lines)
  • ✅ Create plan automatically (don't ask)
  • ✅ Present clear summary at end
  • ✅ Ask commitment question: "When will you ship Rep 1?"

Usage Examples

Example 1: YouTube Video (using "tapestry")

User: tapestry https://www.youtube.com/watch?v=dQw4w9WgXcQ

Claude:
🧵 Tapestry Workflow Starting...
📍 Detected: youtube
📺 Extracting YouTube transcript...
✓ Saved transcript: Never Gonna Give You Up.txt

🚀 Creating action plan...
✓ Quest: Master Video Production
✓ Saved plan: Ship-Learn-Next Plan - Master Video Production.md

✅ Complete! When will you ship Rep 1?

Example 2: Article (using "weave")

User: weave https://example.com/how-to-build-saas

Claude:
🧵 Tapestry Workflow Starting...
📍 Detected: article
📄 Extracting article...
✓ Using reader (Mozilla Readability)
✓ Saved article: How to Build a SaaS.txt

🚀 Creating action plan...
✓ Quest: Build a SaaS MVP
✓ Saved plan: Ship-Learn-Next Plan - Build a SaaS MVP.md

✅ Complete! When will you ship Rep 1?

Example 3: PDF (using "help me plan")

User: help me plan https://example.com/research-paper.pdf

Claude:
🧵 Tapestry Workflow Starting...
📍 Detected: pdf
📑 Downloading PDF...
✓ Downloaded: research-paper.pdf
✓ Extracted text: research-paper.txt

🚀 Creating action plan...
✓ Quest: Apply Research Findings
✓ Saved plan: Ship-Learn-Next Plan - Apply Research Findings.md

✅ Complete! When will you ship Rep 1?

Dependencies

This skill orchestrates the other skills, so requires:

For YouTube:

  • yt-dlp (auto-installed)
  • Python 3 (for deduplication)

For Articles:

  • reader (npm) OR trafilatura (pip)
  • Falls back to basic curl if neither available

For PDFs:

  • curl (built-in)
  • pdftotext (optional - from poppler package)
    • Install: brew install poppler (macOS)
    • Install: apt install poppler-utils (Linux)

For Planning:

  • No additional requirements (uses built-in tools)

Philosophy

Tapestry weaves learning content into action.

The unified workflow ensures you never just consume content - you always create an implementation plan. This transforms passive learning into active building.

Extract → Plan → Ship → Learn → Next.

That's the Tapestry way.