execution-engine-analysis
Analyze control flow, concurrency models, and event architectures in agent frameworks. Use when (1) understanding async vs sync execution patterns, (2) classifying execution topology (DAG/FSM/Linear), (3) mapping event emission and observability hooks, (4) evaluating scalability characteristics, or (5) comparing execution models across frameworks.
$ 安裝
git clone https://github.com/Dowwie/agent_framework_study /tmp/agent_framework_study && cp -r /tmp/agent_framework_study/.claude/skills/execution-engine-analysis ~/.claude/skills/agent_framework_study// tip: Run this command in your terminal to install the skill
name: execution-engine-analysis description: Analyze control flow, concurrency models, and event architectures in agent frameworks. Use when (1) understanding async vs sync execution patterns, (2) classifying execution topology (DAG/FSM/Linear), (3) mapping event emission and observability hooks, (4) evaluating scalability characteristics, or (5) comparing execution models across frameworks.
Execution Engine Analysis
Analyzes the control flow substrate and concurrency model.
Process
- Identify async model — Native async, sync-with-wrappers, or hybrid
- Classify topology — DAG, FSM, or linear chain
- Catalog events — Callbacks, listeners, generators
- Map observability — Pre/post hooks, interception points
Concurrency Model Classification
Native Async
# Signature: async/await throughout
async def run(self):
result = await self.llm.agenerate(messages)
return await self.process(result)
# Entry point uses asyncio
asyncio.run(agent.run())
Indicators: async def, await, asyncio.gather, aiohttp
Sync with Wrappers
# Signature: sync API wrapping async internals
def run(self):
return asyncio.run(self._async_run())
# Or using thread pools
def run(self):
with ThreadPoolExecutor() as pool:
future = pool.submit(self._blocking_call)
return future.result()
Indicators: asyncio.run() inside sync methods, ThreadPoolExecutor, run_in_executor
Hybrid
# Both sync and async APIs exposed
def invoke(self, input):
return self._sync_invoke(input)
async def ainvoke(self, input):
return await self._async_invoke(input)
Indicators: Paired methods (invoke/ainvoke), sync_to_async decorators
Execution Topology
DAG (Directed Acyclic Graph)
# Signature: Nodes with dependencies
class Node:
def __init__(self, deps: list[Node]): ...
graph.add_edge(node_a, node_b)
result = graph.execute() # Topological order
Indicators: Graph, Node, Edge classes, networkx, topological sort
FSM (Finite State Machine)
# Signature: Explicit states and transitions
class State(Enum):
THINKING = "thinking"
ACTING = "acting"
DONE = "done"
def transition(self, current: State, event: str) -> State:
if current == State.THINKING and event == "action_chosen":
return State.ACTING
Indicators: State enums, transition tables, current_state, state machine libraries
Linear Chain
# Signature: Sequential step execution
def run(self):
result = self.step1()
result = self.step2(result)
result = self.step3(result)
return result
# Or pipeline pattern
chain = step1 | step2 | step3
result = chain.invoke(input)
Indicators: Sequential calls, pipe operators (|), Chain, Pipeline classes
Event Architecture
Callbacks
class Callbacks:
def on_llm_start(self, prompt): ...
def on_llm_end(self, response): ...
def on_tool_start(self, tool, input): ...
def on_tool_end(self, output): ...
def on_error(self, error): ...
Flexibility: Low — fixed hook points Traceability: Medium — easy to follow
Event Listeners/Emitters
emitter = EventEmitter()
emitter.on('llm:start', handler)
emitter.on('tool:*', wildcard_handler)
emitter.emit('llm:start', {'prompt': prompt})
Flexibility: High — dynamic registration Traceability: Low — harder to trace
Async Generators (Streaming)
async def run(self):
async for chunk in self.llm.astream(prompt):
yield {"type": "token", "content": chunk}
yield {"type": "done"}
Flexibility: Medium — streaming-native Traceability: High — follows data flow
Observability Hooks Inventory
| Hook Point | Purpose | Interception Level |
|---|---|---|
| Pre-LLM | Modify prompt | Input |
| Post-LLM | Access raw response | Output |
| Pre-Tool | Validate tool input | Input |
| Post-Tool | Transform tool output | Output |
| Pre-Step | Observe state | Read-only |
| Post-Step | Modify next step | Control flow |
| On-Error | Handle/transform | Error |
Questions to Answer
- Can you intercept tool input before execution?
- Is the raw LLM response accessible (with token counts)?
- Can you modify control flow from hooks?
- Are hooks sync or async?
Output Template
## Execution Engine Analysis: [Framework Name]
### Concurrency Model
- **Type**: [Native Async / Sync-with-Wrappers / Hybrid]
- **Entry Point**: `path/to/main.py:run()`
- **Thread Safety**: [Yes/No/Partial]
### Execution Topology
- **Model**: [DAG / FSM / Linear Chain]
- **Implementation**: [Description with code refs]
- **Parallelization**: [Supported/Not Supported]
### Event Architecture
- **Pattern**: [Callbacks / Listeners / Generators]
- **Registration**: [Static / Dynamic]
- **Streaming**: [Supported / Not Supported]
### Observability Inventory
| Hook | Location | Async | Modifiable |
|------|----------|-------|------------|
| on_llm_start | callbacks.py:L23 | Yes | Input only |
| on_tool_end | callbacks.py:L45 | Yes | Output |
| ... | ... | ... | ... |
### Scalability Assessment
- **Blocking Operations**: [List any]
- **Resource Limits**: [Token counters, rate limits]
- **Recommended Concurrency**: [Threads/Processes/AsyncIO]
Integration
- Prerequisite:
codebase-mappingto identify execution files - Feeds into:
comparative-matrixfor async decisions - Related:
control-loop-extractionfor agent-specific flow
Repository
