lumen-ai
Master AI-powered natural language data exploration with Lumen AI. Use this skill when building conversational data analysis interfaces, enabling natural language queries to databases, creating custom AI agents for domain-specific analytics, implementing RAG with document context, or deploying self-service analytics with LLM-generated SQL and visualizations.
$ 安裝
git clone https://github.com/cdcore09/holoviz-claude /tmp/holoviz-claude && cp -r /tmp/holoviz-claude/plugins/holoviz-expert/skills/lumen-ai ~/.claude/skills/holoviz-claude// tip: Run this command in your terminal to install the skill
name: lumen-ai description: Master AI-powered natural language data exploration with Lumen AI. Use this skill when building conversational data analysis interfaces, enabling natural language queries to databases, creating custom AI agents for domain-specific analytics, implementing RAG with document context, or deploying self-service analytics with LLM-generated SQL and visualizations. compatibility: Requires lumen >= 0.10.0 (with AI support), panel >= 1.3.0, openai or anthropic or other LLM provider libraries. Supports OpenAI, Anthropic Claude, Google Gemini, Mistral, and local models via Ollama or LlamaCPP.
Lumen AI Skill
Overview
Lumen AI is an open-source, agent-based framework for conversational data exploration. Users ask questions in plain English and receive visualizations, SQL queries, and insights automatically generated by large language models.
What is Lumen AI?
Lumen AI translates natural language queries into:
- SQL queries for database exploration
- Interactive visualizations
- Statistical summaries
- Custom domain-specific analyses
- Data-driven insights
Key Features
- Natural Language Interface: Ask questions in plain English
- Multi-LLM Support: OpenAI, Anthropic, Google, Mistral, local models
- Agent Architecture: Specialized agents for SQL, charts, analyses
- Extensible: Custom agents, tools, and analyses
- Privacy-Focused: Full local deployment option
- No Vendor Lock-in: Switch LLM providers with configuration change
Lumen AI vs Lumen Dashboards
| Feature | Lumen AI | Lumen Dashboards |
|---|---|---|
| Interface | Conversational, natural language | Declarative YAML |
| Use Case | Ad-hoc exploration, varying questions | Fixed dashboards, repeated views |
| Users | Non-technical users, self-service | Developers, dashboard builders |
| Cost | LLM API costs | No LLM costs |
| Flexibility | High - generates any query | Fixed - predefined views |
Use Lumen AI when:
- Users need ad-hoc data exploration
- Questions vary and aren't predictable
- Enabling self-service analytics
- Reducing analyst backlog
Use Lumen Dashboards when:
- Dashboard structure is fixed
- Same visualizations needed repeatedly
- No LLM costs desired
- Full control over outputs needed
Quick Start
Installation
# Install Lumen with AI support
pip install lumen[ai]
# Install LLM provider (choose one or more)
pip install openai # OpenAI
pip install anthropic # Anthropic Claude
Launch Built-in Interface
# Set API key
export OPENAI_API_KEY="sk-..."
# Launch with dataset
lumen-ai serve data/sales.csv
# Or with database
lumen-ai serve "postgresql://user:pass@localhost/mydb"
Python API - Basic Example
import lumen.ai as lmai
import panel as pn
from lumen.sources.duckdb import DuckDBSource
pn.extension()
# Configure LLM
lmai.llm.llm_type = "anthropic"
lmai.llm.model = "claude-3-5-sonnet-20241022"
# Load data
source = DuckDBSource(
tables=["./data/sales.csv", "./data/customers.csv"]
)
# Create UI
ui = lmai.ExplorerUI(
source=source,
title="Sales Analytics AI"
)
ui.servable()
Example Queries
Once running, try queries like:
- "What tables are available?"
- "Show me total sales by region"
- "Create a scatter plot of price vs quantity"
- "What were the top 10 products last month?"
- "Calculate average order value per customer"
Core Concepts
1. Agents
Specialized components that handle specific tasks:
- TableListAgent: Shows available tables and schemas
- ChatAgent: General conversation and summaries
- SQLAgent: Generates and executes SQL queries
- hvPlotAgent: Creates interactive visualizations
- VegaLiteAgent: Publication-quality charts
- AnalysisAgent: Custom domain-specific analyses
See: Built-in Agents Reference for complete agent documentation.
2. LLM Providers
Lumen AI works with multiple LLM providers:
Cloud Providers:
- OpenAI (GPT-4o, GPT-4o-mini)
- Anthropic (Claude 3.5 Sonnet, Claude 3 Opus/Haiku)
- Google (Gemini 1.5 Pro/Flash)
- Mistral (Mistral Large/Medium/Small)
Local Models:
- Ollama (Llama 3.1, Mistral, CodeLlama)
- LlamaCPP (custom models)
See: LLM Provider Configuration for setup details and provider comparison.
3. Memory and Context
Agents share a memory system:
- Query results persist across interactions
- Agents can build on previous work
- Context maintained throughout conversation
4. Tools
Extend agent capabilities:
- DocumentLookup: RAG for document context
- TableLookup: Schema and metadata access
- Custom Tools: External APIs, calculations, etc.
See: Custom Tools Guide for building tools.
Common Patterns
Pattern 1: Basic Analytics Interface
import lumen.ai as lmai
from lumen.sources.duckdb import DuckDBSource
# Configure LLM
lmai.llm.llm_type = "openai"
lmai.llm.model = "gpt-4o"
# Load data
source = DuckDBSource(tables=["sales.csv"])
# Create UI
ui = lmai.ExplorerUI(
source=source,
title="Business Analytics"
)
ui.servable()
Pattern 2: With Document Context (RAG)
source = DuckDBSource(
tables=["sales.csv", "products.parquet"],
documents=[
"./docs/data_dictionary.pdf",
"./docs/business_rules.md"
]
)
ui = lmai.ExplorerUI(
source=source,
tools=[lmai.tools.DocumentLookup]
)
Agents will automatically search documents for context when needed.
Pattern 3: Custom Agent
from lumen.ai.agents import Agent
import param
class SentimentAgent(Agent):
"""Analyze sentiment in text data."""
requires = param.List(default=["current_source"])
provides = param.List(default=["sentiment_analysis"])
purpose = """
Analyzes sentiment in text columns.
Use when user asks about sentiment, emotions, or tone.
Keywords: sentiment, emotion, positive, negative, tone
"""
async def respond(self, query: str):
# Agent implementation
source = self.memory["current_source"]
# ... analyze sentiment ...
yield "Sentiment analysis results..."
# Use custom agent
ui = lmai.ExplorerUI(
source=source,
agents=[SentimentAgent, lmai.agents.ChatAgent]
)
See: Custom Agents Guide for detailed development guide.
Pattern 4: Custom Analysis
from lumen.ai.analyses import Analysis
from lumen.pipeline import Pipeline
import param
class CohortAnalysis(Analysis):
"""Customer cohort retention analysis."""
columns = param.List(default=[
'customer_id', 'signup_date', 'purchase_date'
])
def __call__(self, pipeline: Pipeline):
# Cohort analysis logic
df = pipeline.data
# ... calculate cohorts ...
return results
# Register analysis
ui = lmai.ExplorerUI(
source=source,
agents=[
lmai.agents.AnalysisAgent(analyses=[CohortAnalysis])
]
)
See: Custom Analyses Guide for examples.
Pattern 5: Multi-Source Data
from lumen.sources.duckdb import DuckDBSource
source = DuckDBSource(
tables={
"sales": "./data/sales.parquet",
"customers": "./data/customers.csv",
"products": "https://data.company.com/products.csv"
}
)
ui = lmai.ExplorerUI(source=source)
Configuration
LLM Selection
Quick reference for choosing LLM:
| Use Case | Provider | Model | Why |
|---|---|---|---|
| Production analytics | OpenAI | gpt-4o | Best balance |
| Complex SQL | Anthropic | claude-3-5-sonnet | Superior reasoning |
| High volume | OpenAI | gpt-4o-mini | Cost-effective |
| Sensitive data | Ollama | llama3.1 | Local only |
| Development | OpenAI | gpt-4o-mini | Fast, cheap |
See: LLM Provider Configuration for complete setup.
Agent Selection
# Use only specific agents
agents = [
lmai.agents.TableListAgent,
lmai.agents.SQLAgent,
lmai.agents.hvPlotAgent,
# Exclude VegaLiteAgent if not needed
]
ui = lmai.ExplorerUI(source=source, agents=agents)
Coordinator Types
DependencyResolver (default): Recursively resolves agent dependencies
ui = lmai.ExplorerUI(source=source, coordinator="dependency")
Planner: Creates execution plan upfront
ui = lmai.ExplorerUI(source=source, coordinator="planner")
UI Customization
ui = lmai.ExplorerUI(
source=source,
title="Custom Analytics AI",
accent_color="#00aa41",
suggestions=[
"Show me revenue trends",
"What are the top products?",
"Create customer segmentation"
]
)
Best Practices
1. Provider Selection
- Production: Use Anthropic Claude 3.5 Sonnet or GPT-4o
- Development: Use GPT-4o-mini for cost savings
- Sensitive data: Use Ollama for local deployment
2. Security
import os
# ✅ Good: Environment variables
lmai.llm.api_key = os.getenv("OPENAI_API_KEY")
# ❌ Bad: Hardcoded secrets
lmai.llm.api_key = "sk-..."
3. Performance
# Limit table sizes for exploration
source = DuckDBSource(
tables=["large_table.parquet"],
table_kwargs={"large_table": {"nrows": 100000}}
)
4. User Experience
# Provide example queries
ui = lmai.ExplorerUI(
source=source,
suggestions=[
"Show me revenue trends",
"Top 10 products by sales",
"Customer segmentation analysis"
]
)
Deployment
Development
lumen-ai serve app.py --autoreload --show
Production
panel serve app.py \
--port 80 \
--num-procs 4 \
--allow-websocket-origin=analytics.company.com
Docker
FROM python:3.11-slim
WORKDIR /app
COPY requirements.txt .
RUN pip install -r requirements.txt
COPY app.py data/ ./
CMD ["panel", "serve", "app.py", "--port", "5006", "--address", "0.0.0.0"]
See: Deployment Guide for production deployment, Docker, Kubernetes, and security.
Troubleshooting
LLM Not Responding
# Check API key
import os
print(os.getenv("OPENAI_API_KEY"))
# Test connection
curl https://api.openai.com/v1/models \
-H "Authorization: Bearer $OPENAI_API_KEY"
Agent Not Selected
# Debug which agent was selected
print(ui.agent_manager.last_selected_agent)
# View agent purposes
for agent in ui.agents:
print(f"{agent.__class__.__name__}: {agent.purpose}")
SQL Generation Errors
- Add data dictionary as document for context
- Provide example queries in agent prompts
- Check table schemas match query expectations
See: Troubleshooting Guide for complete troubleshooting reference.
Progressive Learning Path
Level 1: Getting Started
- Install and launch built-in interface
- Try example queries
- Configure LLM provider
Resources:
Level 2: Python API
- Create basic ExplorerUI
- Configure agents and tools
- Add document context (RAG)
Resources:
Level 3: Customization
- Build custom agents
- Create custom analyses
- Add custom tools
Resources:
Level 4: Production
- Deploy with authentication
- Implement monitoring
- Scale horizontally
Resources:
Additional Resources
Documentation
- LLM Provider Configuration - Setup for OpenAI, Anthropic, local models
- Built-in Agents Reference - Complete agent documentation
- Custom Agents Guide - Build specialized agents
- Custom Analyses Guide - Domain-specific analyses
- Custom Tools Guide - Extend agent capabilities
- Deployment Guide - Production deployment
- Troubleshooting Guide - Common issues and solutions
External Links
Use Cases
Business Analytics
- Ad-hoc revenue analysis
- Customer behavior exploration
- Sales performance tracking
- Market segmentation
Data Science
- Exploratory data analysis
- Quick statistical summaries
- Hypothesis testing
- Pattern discovery
Operations
- Real-time monitoring queries
- Anomaly investigation
- Performance metrics
- Incident analysis
Self-Service Analytics
- Enabling business users
- Reducing analyst backlog
- Democratizing data access
- Maintaining governance
Summary
Lumen AI transforms data exploration through natural language interfaces powered by LLMs.
Strengths:
- No SQL or coding required for users
- Flexible LLM support (cloud and local)
- Extensible architecture
- Privacy-focused options
- Reduces analyst workload
Ideal for:
- Ad-hoc data exploration
- Non-technical users
- Rapid insights
- Self-service analytics
Consider alternatives when:
- Fixed dashboards needed → Lumen Dashboards
- No LLM budget → Traditional BI tools
- Highly custom logic → Panel Dashboards
Related Skills
- Lumen Dashboards - Declarative YAML dashboards
- Panel Dashboards - Interactive dashboard development
- Plotting Fundamentals - Quick plotting with hvPlot
Repository
