Marketplace
ml-inference-optimization
ML inference latency optimization, model compression, distillation, caching strategies, and edge deployment patterns. Use when optimizing inference performance, reducing model size, or deploying ML at the edge.
allowed_tools: Read, Glob, Grep
$ 安裝
git clone https://github.com/melodic-software/claude-code-plugins /tmp/claude-code-plugins && cp -r /tmp/claude-code-plugins/plugins/systems-design/skills/ml-inference-optimization ~/.claude/skills/claude-code-plugins// tip: Run this command in your terminal to install the skill
SKILL.md
name: ml-inference-optimization description: ML inference latency optimization, model compression, distillation, caching strategies, and edge deployment patterns. Use when optimizing inference performance, reducing model size, or deploying ML at the edge. allowed-tools: Read, Glob, Grep
ML Inference Optimization
When to Use This Skill
Use this skill when:
- Optimizing ML inference latency
- Reducing model size for deployment
- Implementing model compression techniques
- Designing inference caching strategies
- Deploying models at the edge
- Balancing accuracy vs. latency trade-offs
Keywords: inference optimization, latency, model compression, distillation, pruning, quantization, caching, edge ML, TensorRT, ONNX, model serving, batching, hardware acceleration
Inference Optimization Overview
┌─────────────────────────────────────────────────────────────────────┐
│ Inference Optimization Stack │
├─────────────────────────────────────────────────────────────────────┤
│ │
│ ┌──────────────────────────────────────────────────────────────┐ │
│ │ Model Level │ │
│ │ Distillation │ Pruning │ Quantization │ Architecture Search │ │
│ └──────────────────────────────────────────────────────────────┘ │
│ │ │
│ ▼ │
│ ┌──────────────────────────────────────────────────────────────┐ │
│ │ Compiler Level │ │
│ │ Graph optimization │ Operator fusion │ Memory planning │ │
│ └──────────────────────────────────────────────────────────────┘ │
│ │ │
│ ▼ │
│ ┌──────────────────────────────────────────────────────────────┐ │
│ │ Runtime Level │ │
│ │ Batching │ Caching │ Async execution │ Multi-threading │ │
│ └──────────────────────────────────────────────────────────────┘ │
│ │ │
│ ▼ │
│ ┌──────────────────────────────────────────────────────────────┐ │
│ │ Hardware Level │ │
│ │ GPU │ TPU │ NPU │ CPU SIMD │ Custom accelerators │ │
│ └──────────────────────────────────────────────────────────────┘ │
│ │
└─────────────────────────────────────────────────────────────────────┘
Model Compression Techniques
Technique Overview
| Technique | Size Reduction | Speed Improvement | Accuracy Impact |
|---|---|---|---|
| Quantization | 2-4x | 2-4x | Low (1-2%) |
| Pruning | 2-10x | 1-3x | Low-Medium |
| Distillation | 3-10x | 3-10x | Medium |
| Low-rank factorization | 2-5x | 1.5-3x | Low-Medium |
| Weight sharing | 10-100x | Variable | Medium-High |
Knowledge Distillation
┌─────────────────────────────────────────────────────────────────────┐
│ Knowledge Distillation │
├─────────────────────────────────────────────────────────────────────┤
│ │
│ ┌──────────────┐ │
│ │ Teacher Model│ (Large, accurate, slow) │
│ │ GPT-4 │ │
│ └──────────────┘ │
│ │ │
│ ▼ Soft labels (probability distributions) │
│ ┌──────────────────────────────────────────────────────────────┐ │
│ │ Training Process │ │
│ │ Loss = α × CrossEntropy(student, hard_labels) │ │
│ │ + (1-α) × KL_Div(student, teacher_soft_labels) │ │
│ └──────────────────────────────────────────────────────────────┘ │
│ │ │
│ ▼ │
│ ┌──────────────┐ │
│ │Student Model │ (Small, nearly as accurate, fast) │
│ │ DistilBERT │ │
│ └──────────────┘ │
│ │
└─────────────────────────────────────────────────────────────────────┘
Distillation Types:
| Type | Description | Use Case |
|---|---|---|
| Response distillation | Match teacher outputs | General compression |
| Feature distillation | Match intermediate layers | Better transfer |
| Relation distillation | Match sample relationships | Structured data |
| Self-distillation | Model teaches itself | Regularization |
Pruning Strategies
Unstructured Pruning (Weight-level):
Before: [0.1, 0.8, 0.2, 0.9, 0.05, 0.7]
After: [0.0, 0.8, 0.0, 0.9, 0.0, 0.7] (50% sparse)
• Flexible, high sparsity possible
• Needs sparse hardware/libraries
Structured Pruning (Channel/Layer-level):
Before: ┌───┬───┬───┬───┐
│ C1│ C2│ C3│ C4│
└───┴───┴───┴───┘
After: ┌───┬───┬───┐
│ C1│ C3│ C4│ (Removed C2 entirely)
└───┴───┴───┘
• Works with standard hardware
• Lower compression ratio
Pruning Decision Criteria:
| Method | Description | Effectiveness |
|---|---|---|
| Magnitude-based | Remove smallest weights | Simple, effective |
| Gradient-based | Remove low-gradient weights | Better accuracy |
| Second-order | Use Hessian information | Best but expensive |
| Lottery ticket | Find winning subnetwork | Theoretical insight |
Quantization (Detailed)
Precision Hierarchy:
FP32 (32 bits): ████████████████████████████████
FP16 (16 bits): ████████████████
BF16 (16 bits): ████████████████ (different mantissa/exponent)
INT8 (8 bits): ████████
INT4 (4 bits): ████
Binary (1 bit): █
Memory and Compute Scale Proportionally
Quantization Approaches:
| Approach | When Applied | Quality | Effort |
|---|---|---|---|
| Dynamic quantization | Runtime | Good | Low |
| Static quantization | Post-training with calibration | Better | Medium |
| QAT | During training | Best | High |
Compiler-Level Optimization
Graph Optimization
Original Graph:
Input → Conv → BatchNorm → ReLU → Conv → BatchNorm → ReLU → Output
Optimized Graph (Operator Fusion):
Input → FusedConvBNReLU → FusedConvBNReLU → Output
Benefits:
• Fewer kernel launches
• Better memory locality
• Reduced memory bandwidth
Common Optimizations
| Optimization | Description | Speedup |
|---|---|---|
| Operator fusion | Combine sequential ops | 1.2-2x |
| Constant folding | Pre-compute constants | 1.1-1.5x |
| Dead code elimination | Remove unused ops | Variable |
| Layout optimization | Optimize tensor memory layout | 1.1-1.3x |
| Memory planning | Optimize buffer allocation | 1.1-1.2x |
Optimization Frameworks
| Framework | Vendor | Best For |
|---|---|---|
| TensorRT | NVIDIA | NVIDIA GPUs, lowest latency |
| ONNX Runtime | Microsoft | Cross-platform, broad support |
| OpenVINO | Intel | Intel CPUs/GPUs |
| Core ML | Apple | Apple devices |
| TFLite | Mobile, embedded | |
| Apache TVM | Open source | Custom hardware, research |
Runtime Optimization
Batching Strategies
No Batching:
Request 1: [Process] → Response 1 10ms
Request 2: [Process] → Response 2 10ms
Request 3: [Process] → Response 3 10ms
Total: 30ms, GPU underutilized
Dynamic Batching:
Requests 1-3: [Wait 5ms] → [Process batch] → Responses
Total: 15ms, 2x throughput
Trade-off: Latency vs. Throughput
• Larger batch: Higher throughput, higher latency
• Smaller batch: Lower latency, lower throughput
Batching Parameters:
| Parameter | Description | Trade-off |
|---|---|---|
batch_size | Maximum batch size | Throughput vs. latency |
max_wait_time | Wait time for batch fill | Latency vs. efficiency |
min_batch_size | Minimum before processing | Latency predictability |
Caching Strategies
┌─────────────────────────────────────────────────────────────────────┐
│ Inference Caching Layers │
├─────────────────────────────────────────────────────────────────────┤
│ │
│ Layer 1: Input Cache │
│ ┌─────────────────────────────────────────────────────────────┐ │
│ │ Cache exact inputs → Return cached outputs │ │
│ │ Hit rate: Low (inputs rarely repeat exactly) │ │
│ └─────────────────────────────────────────────────────────────┘ │
│ │
│ Layer 2: Embedding Cache │
│ ┌─────────────────────────────────────────────────────────────┐ │
│ │ Cache computed embeddings for repeated tokens/entities │ │
│ │ Hit rate: Medium (common tokens repeat) │ │
│ └─────────────────────────────────────────────────────────────┘ │
│ │
│ Layer 3: KV Cache (for transformers) │
│ ┌─────────────────────────────────────────────────────────────┐ │
│ │ Cache key-value pairs for attention │ │
│ │ Hit rate: High (reuse across tokens in sequence) │ │
│ └─────────────────────────────────────────────────────────────┘ │
│ │
│ Layer 4: Result Cache │
│ ┌─────────────────────────────────────────────────────────────┐ │
│ │ Cache semantic equivalents (fuzzy matching) │ │
│ │ Hit rate: Variable (depends on query distribution) │ │
│ └─────────────────────────────────────────────────────────────┘ │
│ │
└─────────────────────────────────────────────────────────────────────┘
Semantic Caching for LLMs:
Query: "What's the capital of France?"
↓
Hash + Embed query
↓
Search cache (similarity > threshold)
↓
├── Hit: Return cached response
└── Miss: Generate → Cache → Return
Async and Parallel Execution
Sequential:
┌─────┐ ┌─────┐ ┌─────┐
│Prep │→│Model│→│Post │ Total: 30ms
│10ms │ │15ms │ │5ms │
└─────┘ └─────┘ └─────┘
Pipelined:
Request 1: │Prep│Model│Post│
Request 2: │Prep│Model│Post│
Request 3: │Prep│Model│Post│
Throughput: 3x higher
Latency per request: Same
Hardware Acceleration
Hardware Comparison
| Hardware | Strengths | Limitations | Best For |
|---|---|---|---|
| GPU (NVIDIA) | High parallelism, mature ecosystem | Power, cost | Training, large batch inference |
| TPU (Google) | Matrix ops, cloud integration | Vendor lock-in | Google Cloud workloads |
| NPU (Apple/Qualcomm) | Power efficient, on-device | Limited models | Mobile, edge |
| CPU | Flexible, available | Slower for ML | Low-batch, CPU-bound |
| FPGA | Customizable, low latency | Development complexity | Specialized workloads |
GPU Optimization
| Optimization | Description | Impact |
|---|---|---|
| Tensor Cores | Use FP16/INT8 tensor operations | 2-8x speedup |
| CUDA graphs | Reduce kernel launch overhead | 1.5-2x for small models |
| Multi-stream | Parallel execution | Higher throughput |
| Memory pooling | Reduce allocation overhead | Lower latency variance |
Edge Deployment
Edge Constraints
┌─────────────────────────────────────────────────────────────────────┐
│ Edge Deployment Constraints │
├─────────────────────────────────────────────────────────────────────┤
│ │
│ Resource Constraints: │
│ ├── Memory: 1-4 GB (vs. 64+ GB cloud) │
│ ├── Compute: 1-10 TOPS (vs. 100+ TFLOPS cloud) │
│ ├── Power: 5-15W (vs. 300W+ cloud) │
│ └── Storage: 16-128 GB (vs. TB cloud) │
│ │
│ Operational Constraints: │
│ ├── No network (offline operation) │
│ ├── Variable ambient conditions │
│ ├── Infrequent updates │
│ └── Long deployment lifetime │
│ │
└─────────────────────────────────────────────────────────────────────┘
Edge Optimization Strategies
| Strategy | Description | Use When |
|---|---|---|
| Model selection | Use edge-native models (MobileNet, EfficientNet) | Accuracy acceptable |
| Aggressive quantization | INT8 or lower | Memory/power constrained |
| On-device distillation | Distill to tiny model | Extreme constraints |
| Split inference | Edge preprocessing, cloud inference | Network available |
| Model caching | Cache results locally | Repeated queries |
Edge ML Frameworks
| Framework | Platform | Features |
|---|---|---|
| TensorFlow Lite | Android, iOS, embedded | Quantization, delegates |
| Core ML | iOS, macOS | Neural Engine optimization |
| ONNX Runtime Mobile | Cross-platform | Broad model support |
| PyTorch Mobile | Android, iOS | Familiar API |
| TensorRT | NVIDIA Jetson | Maximum performance |
Latency Profiling
Profiling Methodology
┌─────────────────────────────────────────────────────────────────────┐
│ Latency Breakdown Analysis │
├─────────────────────────────────────────────────────────────────────┤
│ │
│ 1. Data Loading: ████████░░░░░░░░░░ 15% │
│ 2. Preprocessing: ██████░░░░░░░░░░░░ 10% │
│ 3. Model Inference: ████████████████░░ 60% │
│ 4. Postprocessing: ████░░░░░░░░░░░░░░ 8% │
│ 5. Response Serialization:███░░░░░░░░░░░░░░░ 7% │
│ │
│ Target: Model inference (60% = biggest optimization opportunity) │
│ │
└─────────────────────────────────────────────────────────────────────┘
Profiling Tools
| Tool | Use For |
|---|---|
| PyTorch Profiler | PyTorch model profiling |
| TensorBoard | TensorFlow visualization |
| NVIDIA Nsight | GPU profiling |
| Chrome Tracing | General timeline visualization |
| perf | CPU profiling |
Key Metrics
| Metric | Description | Target |
|---|---|---|
| P50 latency | Median latency | < SLA |
| P99 latency | Tail latency | < 2x P50 |
| Throughput | Requests/second | Meet demand |
| GPU utilization | Compute usage | > 80% |
| Memory bandwidth | Memory usage | < limit |
Optimization Workflow
Systematic Approach
┌─────────────────────────────────────────────────────────────────────┐
│ Optimization Workflow │
├─────────────────────────────────────────────────────────────────────┤
│ │
│ 1. Baseline │
│ └── Measure current performance (latency, throughput, accuracy) │
│ │
│ 2. Profile │
│ └── Identify bottlenecks (model, data, system) │
│ │
│ 3. Optimize (in order of effort/impact): │
│ ├── Hardware: Use right accelerator │
│ ├── Compiler: Enable optimizations (TensorRT, ONNX) │
│ ├── Runtime: Batching, caching, async │
│ ├── Model: Quantization, pruning │
│ └── Architecture: Distillation, model change │
│ │
│ 4. Validate │
│ └── Verify accuracy maintained, latency improved │
│ │
│ 5. Deploy and Monitor │
│ └── Track real-world performance │
│ │
└─────────────────────────────────────────────────────────────────────┘
Optimization Priority Matrix
High Impact
│
Compiler Opts ────┼──── Quantization
(easy win) │ (best ROI)
│
Low Effort ──────────────┼──────────────── High Effort
│
Batching ────┼──── Distillation
(quick win) │ (major effort)
│
Low Impact
Common Patterns
Multi-Model Serving
┌─────────────────────────────────────────────────────────────────────┐
│ │
│ Request → ┌─────────┐ │
│ │ Router │ │
│ └─────────┘ │
│ │ │ │ │
│ ┌────────┘ │ └────────┐ │
│ ▼ ▼ ▼ │
│ ┌───────┐ ┌───────┐ ┌───────┐ │
│ │ Tiny │ │ Small │ │ Large │ │
│ │ <10ms │ │ <50ms │ │<500ms │ │
│ └───────┘ └───────┘ └───────┘ │
│ │
│ Routing strategies: │
│ • Complexity-based: Simple→Tiny, Complex→Large │
│ • Confidence-based: Try Tiny, escalate if low confidence │
│ • SLA-based: Route based on latency requirements │
│ │
└─────────────────────────────────────────────────────────────────────┘
Speculative Execution
Query: "Translate: Hello"
│
├──▶ Small model (draft): "Bonjour" (5ms)
│
└──▶ Large model (verify): Check "Bonjour" (10ms parallel)
│
├── Accept: Return immediately
└── Reject: Generate with large model
Speedup: 2-3x when drafts are often accepted
Cascade Models
Input → ┌────────┐
│ Filter │ ← Cheap filter (reject obvious negatives)
└────────┘
│ (candidates only)
▼
┌────────┐
│ Stage 1│ ← Fast model (coarse ranking)
└────────┘
│ (top-100)
▼
┌────────┐
│ Stage 2│ ← Accurate model (fine ranking)
└────────┘
│ (top-10)
▼
Output
Benefit: 10x cheaper, similar accuracy
Optimization Checklist
Pre-Deployment
- Profile baseline performance
- Identify primary bottleneck (model, data, system)
- Apply compiler optimizations (TensorRT, ONNX)
- Evaluate quantization (INT8 usually safe)
- Tune batch size for target throughput
- Test accuracy after optimization
Deployment
- Configure appropriate hardware
- Enable caching where applicable
- Set up monitoring (latency, throughput, errors)
- Configure auto-scaling policies
- Implement graceful degradation
Post-Deployment
- Monitor p99 latency
- Track accuracy metrics
- Analyze cache hit rates
- Review cost efficiency
- Plan iterative improvements
Related Skills
llm-serving-patterns- LLM-specific serving optimizationml-system-design- End-to-end ML pipeline designquality-attributes-taxonomy- Performance as quality attributeestimation-techniques- Capacity planning for ML systems
Version History
- v1.0.0 (2025-12-26): Initial release - ML inference optimization patterns
Last Updated
Date: 2025-12-26
Repository

melodic-software
Author
melodic-software/claude-code-plugins/plugins/systems-design/skills/ml-inference-optimization
3
Stars
0
Forks
Updated3d ago
Added1w ago