Development
Frontend, Backend, Mobile, and Full-Stack development skills
20307 skills in this category
Subcategories
benchling-integration
Benchling R&D platform integration. Access registry (DNA, proteins), inventory, ELN entries, workflows via API, build Benchling Apps, query Data Warehouse, for lab data management automation.
omero-integration
Microscopy data management platform. Access images via Python, retrieve datasets, analyze pixels, manage ROIs/annotations, batch processing, for high-content screening and microscopy workflows.
geo-database
Access NCBI GEO for gene expression/genomics data. Search/download microarray and RNA-seq datasets (GSE, GSM, GPL), retrieve SOFT/Matrix files, for transcriptomics and expression analysis.
paper-2-web
This skill should be used when converting academic papers into promotional and presentation formats including interactive websites (Paper2Web), presentation videos (Paper2Video), and conference posters (Paper2Poster). Use this skill for tasks involving paper dissemination, conference preparation, creating explorable academic homepages, generating video abstracts, or producing print-ready posters from LaTeX or PDF sources.
zarr-python
Chunked N-D arrays for cloud storage. Compressed arrays, parallel I/O, S3/GCS integration, NumPy/Dask/Xarray compatible, for large-scale scientific computing pipelines.
brenda-database
Access BRENDA enzyme database via SOAP API. Retrieve kinetic parameters (Km, kcat), reaction equations, organism data, and substrate-specific enzyme information for biochemical research and metabolic pathway analysis.
pydeseq2
Differential gene expression analysis (Python DESeq2). Identify DE genes from bulk RNA-seq counts, Wald tests, FDR correction, volcano/MA plots, for RNA-seq analysis.
pennylane
Hardware-agnostic quantum ML framework with automatic differentiation. Use when training quantum circuits via gradients, building hybrid quantum-classical models, or needing device portability across IBM/Google/Rigetti/IonQ. Best for variational algorithms (VQE, QAOA), quantum neural networks, and integration with PyTorch/JAX/TensorFlow. For hardware-specific optimizations use qiskit (IBM) or cirq (Google); for open quantum systems use qutip.
pymc-bayesian-modeling
Bayesian modeling with PyMC. Build hierarchical models, MCMC (NUTS), variational inference, LOO/WAIC comparison, posterior checks, for probabilistic programming and inference.
kegg-database
Direct REST API access to KEGG (academic use only). Pathway analysis, gene-pathway mapping, metabolic pathways, drug interactions, ID conversion. For Python workflows with multiple databases, prefer bioservices. Use this for direct HTTP/REST work or KEGG-specific control.
arboreto
Infer gene regulatory networks (GRNs) from gene expression data using scalable algorithms (GRNBoost2, GENIE3). Use when analyzing transcriptomics data (bulk RNA-seq, single-cell RNA-seq) to identify transcription factor-target gene relationships and regulatory interactions. Supports distributed computation for large-scale datasets.
perplexity-search
Perform AI-powered web searches with real-time information using Perplexity models via LiteLLM and OpenRouter. This skill should be used when conducting web searches for current information, finding recent scientific literature, getting grounded answers with source citations, or accessing information beyond the model knowledge cutoff. Provides access to multiple Perplexity models including Sonar Pro, Sonar Pro Search (advanced agentic search), and Sonar Reasoning Pro through a single OpenRouter API key.
dnanexus-integration
DNAnexus cloud genomics platform. Build apps/applets, manage data (upload/download), dxpy Python SDK, run workflows, FASTQ/BAM/VCF, for genomics pipeline development and execution.
esm
Comprehensive toolkit for protein language models including ESM3 (generative multimodal protein design across sequence, structure, and function) and ESM C (efficient protein embeddings and representations). Use this skill when working with protein sequences, structures, or function prediction; designing novel proteins; generating protein embeddings; performing inverse folding; or conducting protein engineering tasks. Supports both local model usage and cloud-based Forge API for scalable inference.
latchbio-integration
Latch platform for bioinformatics workflows. Build pipelines with Latch SDK, @workflow/@task decorators, deploy serverless workflows, LatchFile/LatchDir, Nextflow/Snakemake integration.
anndata
Data structure for annotated matrices in single-cell analysis. Use when working with .h5ad files or integrating with the scverse ecosystem. This is the data format skill—for analysis workflows use scanpy; for probabilistic models use scvi-tools; for population-scale queries use cellxgene-census.
medchem
Medicinal chemistry filters. Apply drug-likeness rules (Lipinski, Veber), PAINS filters, structural alerts, complexity metrics, for compound prioritization and library filtering.
modal
Run Python code in the cloud with serverless containers, GPUs, and autoscaling. Use when deploying ML models, running batch processing jobs, scheduling compute-intensive tasks, or serving APIs that require GPU acceleration or dynamic scaling.
torch-geometric
Graph Neural Networks (PyG). Node/graph classification, link prediction, GCN, GAT, GraphSAGE, heterogeneous graphs, molecular property prediction, for geometric deep learning.
geopandas
Python library for working with geospatial vector data including shapefiles, GeoJSON, and GeoPackage files. Use when working with geographic data for spatial analysis, geometric operations, coordinate transformations, spatial joins, overlay operations, choropleth mapping, or any task involving reading/writing/analyzing vector geographic data. Supports PostGIS databases, interactive maps, and integration with matplotlib/folium/cartopy. Use for tasks like buffer analysis, spatial joins between datasets, dissolving boundaries, clipping data, calculating areas/distances, reprojecting coordinate systems, creating maps, or converting between spatial file formats.