Tools
Development tools, utilities, and productivity aids
17720 skills in this category
Subcategories
datacommons-client
Work with Data Commons, a platform providing programmatic access to public statistical data from global sources. Use this skill when working with demographic data, economic indicators, health statistics, environmental data, or any public datasets available through Data Commons. Applicable for querying population statistics, GDP figures, unemployment rates, disease prevalence, geographic entity resolution, and exploring relationships between statistical entities.
opentrons-integration
Official Opentrons Protocol API for OT-2 and Flex robots. Use when writing protocols specifically for Opentrons hardware with full access to Protocol API v2 features. Best for production Opentrons protocols, official API compatibility. For multi-vendor automation or broader equipment control use pylabrobot.
pyhealth
Comprehensive healthcare AI toolkit for developing, testing, and deploying machine learning models with clinical data. This skill should be used when working with electronic health records (EHR), clinical prediction tasks (mortality, readmission, drug recommendation), medical coding systems (ICD, NDC, ATC), physiological signals (EEG, ECG), healthcare datasets (MIMIC-III/IV, eICU, OMOP), or implementing deep learning models for healthcare applications (RETAIN, SafeDrug, Transformer, GNN).
pubmed-database
Direct REST API access to PubMed. Advanced Boolean/MeSH queries, E-utilities API, batch processing, citation management. For Python workflows, prefer biopython (Bio.Entrez). Use this for direct HTTP/REST work or custom API implementations.
bioservices
Unified Python interface to 40+ bioinformatics services. Use when querying multiple databases (UniProt, KEGG, ChEMBL, Reactome) in a single workflow with consistent API. Best for cross-database analysis, ID mapping across services. For quick single-database lookups use gget; for sequence/file manipulation use biopython.
clinvar-database
Query NCBI ClinVar for variant clinical significance. Search by gene/position, interpret pathogenicity classifications, access via E-utilities API or FTP, annotate VCFs, for genomic medicine.
venue-templates
Access comprehensive LaTeX templates, formatting requirements, and submission guidelines for major scientific publication venues (Nature, Science, PLOS, IEEE, ACM), academic conferences (NeurIPS, ICML, CVPR, CHI), research posters, and grant proposals (NSF, NIH, DOE, DARPA). This skill should be used when preparing manuscripts for journal submission, conference papers, research posters, or grant proposals and need venue-specific formatting requirements and templates.
omero-integration
Microscopy data management platform. Access images via Python, retrieve datasets, analyze pixels, manage ROIs/annotations, batch processing, for high-content screening and microscopy workflows.
markitdown
Convert files and office documents to Markdown. Supports PDF, DOCX, PPTX, XLSX, images (with OCR), audio (with transcription), HTML, CSV, JSON, XML, ZIP, YouTube URLs, EPubs and more.
datamol
Pythonic wrapper around RDKit with simplified interface and sensible defaults. Preferred for standard drug discovery including SMILES parsing, standardization, descriptors, fingerprints, clustering, 3D conformers, parallel processing. Returns native rdkit.Chem.Mol objects. For advanced control or custom parameters, use rdkit directly.
histolab
Lightweight WSI tile extraction and preprocessing. Use for basic slide processing tissue detection, tile extraction, stain normalization for H&E images. Best for simple pipelines, dataset preparation, quick tile-based analysis. For advanced spatial proteomics, multiplexed imaging, or deep learning pipelines use pathml.
benchling-integration
Benchling R&D platform integration. Access registry (DNA, proteins), inventory, ELN entries, workflows via API, build Benchling Apps, query Data Warehouse, for lab data management automation.
lamindb
This skill should be used when working with LaminDB, an open-source data framework for biology that makes data queryable, traceable, reproducible, and FAIR. Use when managing biological datasets (scRNA-seq, spatial, flow cytometry, etc.), tracking computational workflows, curating and validating data with biological ontologies, building data lakehouses, or ensuring data lineage and reproducibility in biological research. Covers data management, annotation, ontologies (genes, cell types, diseases, tissues), schema validation, integrations with workflow managers (Nextflow, Snakemake) and MLOps platforms (W&B, MLflow), and deployment strategies.
geopandas
Python library for working with geospatial vector data including shapefiles, GeoJSON, and GeoPackage files. Use when working with geographic data for spatial analysis, geometric operations, coordinate transformations, spatial joins, overlay operations, choropleth mapping, or any task involving reading/writing/analyzing vector geographic data. Supports PostGIS databases, interactive maps, and integration with matplotlib/folium/cartopy. Use for tasks like buffer analysis, spatial joins between datasets, dissolving boundaries, clipping data, calculating areas/distances, reprojecting coordinate systems, creating maps, or converting between spatial file formats.
scikit-bio
Biological data toolkit. Sequence analysis, alignments, phylogenetic trees, diversity metrics (alpha/beta, UniFrac), ordination (PCoA), PERMANOVA, FASTA/Newick I/O, for microbiome analysis.
iso-13485-certification
Comprehensive toolkit for preparing ISO 13485 certification documentation for medical device Quality Management Systems. Use when users need help with ISO 13485 QMS documentation, including (1) conducting gap analysis of existing documentation, (2) creating Quality Manuals, (3) developing required procedures and work instructions, (4) preparing Medical Device Files, (5) understanding ISO 13485 requirements, or (6) identifying missing documentation for medical device certification. Also use when users mention medical device regulations, QMS certification, FDA QMSR, EU MDR, or need help with quality system documentation.
scikit-survival
Comprehensive toolkit for survival analysis and time-to-event modeling in Python using scikit-survival. Use this skill when working with censored survival data, performing time-to-event analysis, fitting Cox models, Random Survival Forests, Gradient Boosting models, or Survival SVMs, evaluating survival predictions with concordance index or Brier score, handling competing risks, or implementing any survival analysis workflow with the scikit-survival library.
pytdc
Therapeutics Data Commons. AI-ready drug discovery datasets (ADME, toxicity, DTI), benchmarks, scaffold splits, molecular oracles, for therapeutic ML and pharmacological prediction.
statsmodels
Statistical models library for Python. Use when you need specific model classes (OLS, GLM, mixed models, ARIMA) with detailed diagnostics, residuals, and inference. Best for econometrics, time series, rigorous inference with coefficient tables. For guided statistical test selection with APA reporting use statistical-analysis.
treatment-plans
Generate concise (3-4 page), focused medical treatment plans in LaTeX/PDF format for all clinical specialties. Supports general medical treatment, rehabilitation therapy, mental health care, chronic disease management, perioperative care, and pain management. Includes SMART goal frameworks, evidence-based interventions with minimal text citations, regulatory compliance (HIPAA), and professional formatting. Prioritizes brevity and clinical actionability.