機器學習
1913 skills in 數據與 AI > 機器學習
matchms
Spectral similarity and compound identification for metabolomics. Use for comparing mass spectra, computing similarity scores (cosine, modified cosine), and identifying unknown compounds from spectral libraries. Best for metabolite identification, spectral matching, library searching. For full LC-MS/MS proteomics pipelines use pyopenms.
molfeat
Molecular featurization for ML (100+ featurizers). ECFP, MACCS, descriptors, pretrained models (ChemBERTa), convert SMILES to features, for QSAR and molecular ML.
scanpy
Standard single-cell RNA-seq analysis pipeline. Use for QC, normalization, dimensionality reduction (PCA/UMAP/t-SNE), clustering, differential expression, and visualization. Best for exploratory scRNA-seq analysis with established workflows. For deep learning models use scvi-tools; for data format questions use anndata.
deepchem
Molecular ML with diverse featurizers and pre-built datasets. Use for property prediction (ADMET, toxicity) with traditional ML or GNNs when you want extensive featurization options and MoleculeNet benchmarks. Best for quick experiments with pre-trained models, diverse molecular representations. For graph-first PyTorch workflows use torchdrug; for benchmark datasets use pytdc.
networkx
Comprehensive toolkit for creating, analyzing, and visualizing complex networks and graphs in Python. Use when working with network/graph data structures, analyzing relationships between entities, computing graph algorithms (shortest paths, centrality, clustering), detecting communities, generating synthetic networks, or visualizing network topologies. Applicable to social networks, biological networks, transportation systems, citation networks, and any domain involving pairwise relationships.
torchdrug
PyTorch-native graph neural networks for molecules and proteins. Use when building custom GNN architectures for drug discovery, protein modeling, or knowledge graph reasoning. Best for custom model development, protein property prediction, retrosynthesis. For pre-trained models and diverse featurizers use deepchem; for benchmark datasets use pytdc.
scikit-bio
Biological data toolkit. Sequence analysis, alignments, phylogenetic trees, diversity metrics (alpha/beta, UniFrac), ordination (PCoA), PERMANOVA, FASTA/Newick I/O, for microbiome analysis.
aeon
This skill should be used for time series machine learning tasks including classification, regression, clustering, forecasting, anomaly detection, segmentation, and similarity search. Use when working with temporal data, sequential patterns, or time-indexed observations requiring specialized algorithms beyond standard ML approaches. Particularly suited for univariate and multivariate time series analysis with scikit-learn compatible APIs.
pytdc
Therapeutics Data Commons. AI-ready drug discovery datasets (ADME, toxicity, DTI), benchmarks, scaffold splits, molecular oracles, for therapeutic ML and pharmacological prediction.
pyopenms
Complete mass spectrometry analysis platform. Use for proteomics workflows feature detection, peptide identification, protein quantification, and complex LC-MS/MS pipelines. Supports extensive file formats and algorithms. Best for proteomics, comprehensive MS data processing. For simple spectral comparison and metabolite ID use matchms.
pathml
Full-featured computational pathology toolkit. Use for advanced WSI analysis including multiplexed immunofluorescence (CODEX, Vectra), nucleus segmentation, tissue graph construction, and ML model training on pathology data. Supports 160+ slide formats. For simple tile extraction from H&E slides, histolab may be simpler.
scikit-survival
Comprehensive toolkit for survival analysis and time-to-event modeling in Python using scikit-survival. Use this skill when working with censored survival data, performing time-to-event analysis, fitting Cox models, Random Survival Forests, Gradient Boosting models, or Survival SVMs, evaluating survival predictions with concordance index or Brier score, handling competing risks, or implementing any survival analysis workflow with the scikit-survival library.
cobrapy
Constraint-based metabolic modeling (COBRA). FBA, FVA, gene knockouts, flux sampling, SBML models, for systems biology and metabolic engineering analysis.
gtars
High-performance toolkit for genomic interval analysis in Rust with Python bindings. Use when working with genomic regions, BED files, coverage tracks, overlap detection, tokenization for ML models, or fragment analysis in computational genomics and machine learning applications.
geniml
This skill should be used when working with genomic interval data (BED files) for machine learning tasks. Use for training region embeddings (Region2Vec, BEDspace), single-cell ATAC-seq analysis (scEmbed), building consensus peaks (universes), or any ML-based analysis of genomic regions. Applies to BED file collections, scATAC-seq data, chromatin accessibility datasets, and region-based genomic feature learning.
shap
Model interpretability and explainability using SHAP (SHapley Additive exPlanations). Use this skill when explaining machine learning model predictions, computing feature importance, generating SHAP plots (waterfall, beeswarm, bar, scatter, force, heatmap), debugging models, analyzing model bias or fairness, comparing models, or implementing explainable AI. Works with tree-based models (XGBoost, LightGBM, Random Forest), deep learning (TensorFlow, PyTorch), linear models, and any black-box model.
scikit-learn
Machine learning in Python with scikit-learn. Use when working with supervised learning (classification, regression), unsupervised learning (clustering, dimensionality reduction), model evaluation, hyperparameter tuning, preprocessing, or building ML pipelines. Provides comprehensive reference documentation for algorithms, preprocessing techniques, pipelines, and best practices.
modal
Run Python code in the cloud with serverless containers, GPUs, and autoscaling. Use when deploying ML models, running batch processing jobs, scheduling compute-intensive tasks, or serving APIs that require GPU acceleration or dynamic scaling.
clinvar-database
Query NCBI ClinVar for variant clinical significance. Search by gene/position, interpret pathogenicity classifications, access via E-utilities API or FTP, annotate VCFs, for genomic medicine.
torch-geometric
Graph Neural Networks (PyG). Node/graph classification, link prediction, GCN, GAT, GraphSAGE, heterogeneous graphs, molecular property prediction, for geometric deep learning.